GD 2023 Weakly and Strongly Fan-Planar Graphs

Julia Katheder 2

 2 University of Tübingen, Germany

GD 2023 Weakly and Strongly Fan-Planar Graphs

Henry Förster 2

Julia Katheder 2

Otfried Cheong 1

 2 University of Tübingen, Germany

Fan-Planarity

Each edge *e* can only be crossed by a *fan* of edges, i.e., a bundle of edges sharing a common endpoint that all cross *e* from the same side.

e

Fan-Planarity

Each edge *e* can only be crossed by a *fan* of edges, i.e., a bundle of edges sharing a common endpoint that all cross *e* from the same side.

Anchor of e

[Cheong et al., 2022]

[Cheong et al., 2022]

[Cheong et al., 2022]

Do the graph classes of weak & strong fan-planarity coincide?

We start with a pattern (III) ...

We start with a pattern (III) and want to prevent an edge flip

Red edges are replaced by K_7

We start with a pattern (III) and want to prevent an edge flip

Red edges are replaced by K_7

Lemma [Binucci et al. 2015].

We start with a pattern (III) and want to prevent an edge flip

Red edges are replaced by K_7

Lemma [Binucci et al. 2015].

We start with a pattern (III) and want to prevent an edge flip

Red edges are replaced by K_7

Lemma [Binucci et al. 2015].

We start with a pattern (III) and want to prevent an edge flip

Red edges are replaced by K_7

Lemma [Binucci et al. 2015].

We start with a pattern (III) and want to prevent an edge flip

Red edges are replaced by K_7

Lemma [Binucci et al. 2015].

We start with a pattern (III) and want to prevent an edge flip

Red edges are replaced by K_7

Lemma [Binucci et al. 2015].

We start with a pattern (III) and want to prevent an edge flip

Red edges are replaced by K_7 ... equivalent to a graph G' where red edges are uncrossed

We start with a pattern (III) and want to prevent an edge flip

Red edges are replaced by K_7 ... equivalent to a graph G' where red edges are uncrossed

We could still choose a different outer face

We start with a pattern (III) and want to prevent an edge flip

Red edges are replaced by K_7 ... equivalent to a graph G' where red edges are uncrossed

We could still choose a different outer face

Theorem. There exists a weakly fan-planar graph that does not admit a strongly fan-planar drawing.

Theorem. There exists a weakly fan-planar graph that does not admit a strongly fan-planar drawing.

[Kaufmann and Ueckerdt, 2014] Fan-planar graphs: $|E| \leq 5n - 10$

Theorem. There exists a weakly fan-planar graph that does not admit a strongly fan-planar drawing.

[Kaufmann and Ueckerdt, 2014] Fan-planar graphs: $|E| \le 5n - 10$

[Angelini et al., 2014] Bipartite fan-planar graphs: $|E| \le 4n - 12$

Adjacency-Crossing

Weakly Fan-Planar

Strongly Fan-Planar

Theorem. There exists a weakly fan-planar graph that does not admit a strongly fan-planar drawing.

[Kaufmann and Ueckerdt, 2014] Fan-planar graphs: $|E| \leq 5n - 10$

[Angelini et al., 2014] Bipartite fan-planar graphs: $|E| \le 4n - 12$

[Brandenburg, 2020] Adjacency-crossing graphs with *m* edges: construction of fan-planar graph with the same # of edges

Adjacency-Crossing

Weakly Fan-Planar

Strongly Fan-Planar

Theorem. There exists a weakly fan-planar graph that does not admit a strongly fan-planar drawing.

[Kaufmann and Ueckerdt, 2022] Fan-planar graphs: $|E| \leq 5n - 10$

[Angelini et al., 2014] Bipartite fan-planar graphs: $|E| \le 4n - 12$

Adjacency-Crossing

Weakly Fan-Planar

Strongly Fan-Planar

Theorem. There exists a weakly fan-planar graph that does not admit a strongly fan-planar drawing.

graphs: $|E| \le 4n - 12$

Adjacency-Crossing

Weakly Fan-Planar

Strongly Fan-Planar

Theorem. There exists a weakly fan-planar graph that does not admit a strongly fan-planar drawing.

Adjacency-Crossing

Weakly Fan-Planar

Strongly Fan-Planar

Theorem. There exists a weakly fan-planar graph that does not admit a strongly fan-planar drawing.

Adjacency-Crossing

Weakly Fan-Planar

Strongly Fan-Planar

Theorem. There exists a weakly fan-planar graph that does not admit a strongly fan-planar drawing.

[Kaufmann and Ueckerdt, 2022] Fan-planar graphs: $|E| \leq 5n - 10$

[Angelini et al., 2014] Bipartite fan-planar graphs: $|E| \le 4n - 12$

Adjacency-Crossing

Weakly Fan-Planar

Strongly Fan-Planar

Theorem. There exists a weakly fan-planar graph that does not admit a strongly fan-planar drawing.

[Kaufmann and Ueckerdt, 2022] Fan-planar graphs: $|E| \le 5n - 10$

[Angelini et al., 2014] Bipartite fan-planar graphs: $|E| \le 4n - 12$

First step, we eliminate certain configurations:

Input: Let G = (V, E) be a (preprocessed) graph on *n* vertices;

admitting a weakly fan-planar drawing Γ ; with the least number of pattern (III)

G

Input: Let G = (V, E) be a (preprocessed) graph on *n* vertices; admitting a weakly fan-planar drawing Γ ;

with the least number of pattern (III)

Induction Hypothesis: $|E| \leq 5n - 10$

G

Input: Let G = (V, E) be a (preprocessed) graph on *n* vertices;

admitting a weakly fan-planar drawing Γ ; with the least number of pattern (III)

Induction Hypothesis: $|E| \leq 5n - 10$

Base case: *G* is strongly fan-planar, so: $|E| \le 5n - 10$

G

Input: Let G = (V, E) be a (preprocessed) graph on *n* vertices;

admitting a weakly fan-planar drawing Γ ; with the least number of pattern (III)

Induction Hypothesis: $|E| \leq 5n - 10$

Base case: G is strongly fan-planar, so: $|E| \le 5n - 10$

Induction step (roughly): G is split into two weakly fan-planar graphs G_1 and G_2 , amounting combined to the same number of edges as G, which contain less triples forming pattern (III):

Input: Let G = (V, E) be a (preprocessed) graph on *n* vertices;

admitting a weakly fan-planar drawing Γ ; with the least number of pattern (III)

Induction Hypothesis: $|E| \leq 5n - 10$

Base case: G is strongly fan-planar, so: $|E| \le 5n - 10$

Induction step (roughly): G is split into two weakly fan-planar graphs G_1 and G_2 , amounting combined to the same number of edges as G, which contain less triples forming pattern (III):

Weak Fan-Planarity: Edge Density Induction on the # of edge triples forming pattern (III) G_2 $|E(G)| = |E(G_1)| + |E(G_2)|$ G_1 e_{l} e \mathcal{U}

Weak Fan-Planarity: Edge Density Induction on the # of edge triples forming pattern (III) G_2 $|E(G)| = |E(G_1)| + |E(G_2)|$ G_1 W E \mathcal{U}

 $|E(G)| = |E(G_1)| + |E(G_2)|$ $\leq 5(n - |V(G_2)| + 2) - 10 + 5(|V(G_2)|) - 10$

 $|E(G)| = |E(G_1)| + |E(G_2)|$ $\leq 5(n - |V(G_2)| + 2) - 10 + 5(|V(G_2)|) - 10$

 G_1

E

W

 $|E(G)| = |E(G_1)| + |E(G_2)|$ $\leq 5(n - |V(G_2)| + 2) - 10 + 5(|V(G_2)|) - 10$ = 5n - 10

Theorem 1. There exists a weakly fan-planar graph that does not admit a strongly fan-planar drawing.

Theorem 1. There exists a weakly fan-planar graph that does not admit a strongly fan-planar drawing.

Theorem 2. A weakly fan-planar graph G with n vertices has at most 5n - 10 edges.

Theorem 1. There exists a weakly fan-planar graph that does not admit a strongly fan-planar drawing.

Theorem 2. A weakly fan-planar graph G with n vertices has at most 5n - 10 edges.

Theorem 3. An *n*-vertex bipartite weakly fan-planar graph has at most 4n - 12 edges.

Theorem 1. There exists a weakly fan-planar graph that does not admit a strongly fan-planar drawing.

Theorem 2. A weakly fan-planar graph G with n vertices has at most 5n - 10 edges.

Theorem 3. An *n*-vertex bipartite weakly fan-planar graph has at most 4n - 12 edges.

What has been...

What has been...

What has been...

Happy to take your questions

Thank you!