On RAC Drawings of Graphs

 with Two Bends per EdgeCsaba D. Tóth

31st International Symposium on Graph Drawing and Network Visualization

 Isola delle Femmine, Italy, September 20-22, 2023

Right Angle Crossing (RAC) Drawings

In a topological graph $G=(V, E)$, the vertices are distinct points in the plane, and every edge is a Jordan arc between two vertices (that does not pass through any vertices).

Right Angle Crossing (RAC) Drawings

In a topological graph $G=(V, E)$, the vertices are distinct points in the plane, and every edge is a Jordan arc between two vertices (that does not pass through any vertices).
A topolgical graph is a Right Angle Crossing (RAC) drawing if every pair of crosing edges meet at 90° angle.

Walter Didimo, Peter Eades, and Giuseppe Liotta:

Drawing Graphs with Right Angle Crossings. WADS 2009.

Right Angle Crossing (RAC) Drawings

In a topological graph $G=(V, E)$, the vertices are distinct points in the plane, and every edge is a Jordan arc between two vertices (that does not pass through any vertices).
A topolgical graph is a Right Angle Crossing (RAC) drawing if every pair of crosing edges meet at 90° angle.
Observation. Every good drawing can be perturbed into a RAC drawing, by modiyfying the edges in the neighborhood of crossings.
...the complexity of the edges increases...

Walter Didimo, Peter Eades, and Giuseppe Liotta:

Drawing Graphs with Right Angle Crossings. WADS 2009.

Right Angle Crossing (RAC) Drawings

For $b \geq 0$, a $\mathbf{R A C}_{b}$ drawing is a RAC drawing in which every edge is a polygonal path with at most b interior vetices (bends).
RAC $_{0}$: straight-line RAC drawing,
RAC_{1} : one-bend RAC drawing,
RAC_{2} : two-bend RAC drawing, RAC_{3} : three-bend RAC drawing.

An (abstract) graph is a $\mathbf{R A C}_{b}$ graph if it admits a RAC_{b} drawing.

Right Angle Crossing (RAC) Drawings

How many edges can an n-vertex $R A C_{b}$ graph have?
Theorem (Didimo, Eades, and Liotta, 2009).
Every graph is $R A C_{3}$. This yields an upper bound of $\binom{n}{2}$.

Right Angle Crossing (RAC) Drawings

How many edges can an n-vertex $R A C_{b}$ graph have?
Theorem (Didimo, Eades, and Liotta, 2009).
Every graph is $R A C_{3}$. This yields an upper bound of $\binom{n}{2}$.
Theorem (Didimo, et al., 2009).
Every $R A C_{0}$ graph on $n \geq 4$ vertices has at most $4 n-10$ edges, and this bound is the best possible.

Right Angle Crossing (RAC) Drawings

How many edges can an n-vertex $R A C_{b}$ graph have?
Theorem (Didimo, Eades, and Liotta, 2009).
Every graph is $R A C_{3}$. This yields an upper bound of $\binom{n}{2}$.
Theorem (Didimo, et al., 2009).
Every $R A C_{0}$ graph on $n \geq 4$ vertices has at most $4 n-10$ edges, and this bound is the best possible.

Theorem (Angelini, Bekos, Förster, and Kaufmann, 2020).
Every $R A C_{1}$ graph on n vertices has at most $5.5 n-O(1)$ edges, and this bound is the best possible.

Right Angle Crossing (RAC) Drawings

How many edges can an n-vertex $\overparen{R A} C_{2}$ graph have?
$\leq 74.2 n$ (Arikushi, Fulek, Keszegh, Moric, and Tóth, 2010)
$\geq 7.83 n-O(\sqrt{n})$ (Arikushi, Fulek, Keszegh, Moric, Tóth, 2010)
$\geq 10 n-O(1)$ (Angelini, Bekos, Katheder, Kaufmann, Pfister, and Ueckerdt, ESA 2023)

Right Angle Crossing (RAC) Drawings

How many edges can an n-vertex $\widehat{R A} C_{2}$ graph have?
$\leq 74.2 n$ (Arikushi, Fulek, Keszegh, Moric, and Tóth, 2010)
$\geq 7.83 n-O(\sqrt{n})$ (Arikushi, Fulek, Keszegh, Moric, Tóth, 2010)
$\geq 10 n-O(1)$ (Angelini, Bekos, Katheder, Kaufmann, Pfister, and Ueckerdt, ESA 2023)
—new result in this short paper-
Theorem. Every $R A C_{2}$ graph on $n \geq 3$ vertices has at most $24 n-26$ edges.

Right Angle Crossing (RAC) Drawings

How many edges can an n-vertex $\widehat{R A} C_{2}$ graph have?
$\leq 74.2 n$ (Arikushi, Fulek, Keszegh, Moric, and Tóth, 2010)
$\geq 7.83 n-O(\sqrt{n})$ (Arikushi, Fulek, Keszegh, Moric, Tóth, 2010)
$\geq 10 n-O(1)$ (Angelini, Bekos, Katheder, Kaufmann, Pfister, and Ueckerdt, ESA 2023)
—new result in this short talk paper-
Theorem. Every $R A C_{2}$ graph on $n \geq 3$ vertices has at most $24 \pi-26$ edges.
$20 n-24$

Multigraphs with Angle-Constrained End Segments

 In a plane multigraph, the vertices are distinct points, and the edges are Jordan arcs between the corresponding vertices (not passing through any other vertex), and any pair of edges may intersect only at vertices.

A plane ortho-fin multigraph is a plane multigraph such that every edge is a polygonal path $\left(p_{0}, p_{1}, \ldots, p_{k}\right)$ where the first and last edge segments are either parallel or orthogonal, that is, $p_{0} p_{1} \| p_{k-1} p_{k}$ or $p_{0} p_{1} \perp p_{k-1} p_{k}$.

Multigraphs with Angle-Constrained End Segments

How many edges can an n-vertex plane ortho-fin multigraph have?
■ Every vertex has at most 3 loops.

- Every edge $u v$ has multiplicity at most 8 .
- Euler's formula yields $3 n+8(3 n-6)=27 n-48$ for $n \geq 3$.

A plane ortho-fin multigraph is a plane multigraph such that every edge is a polygonal path $\left(p_{0}, p_{1}, \ldots, p_{k}\right)$ where the first and last edge segments are either parallel or orthogonal, that is, $p_{0} p_{1} \| p_{k-1} p_{k}$ or $p_{0} p_{1} \perp p_{k-1} p_{k}$.

Multigraphs with Angle-Constrained End Segments

How many edges can an n-vertex plane ortho-fin multigraph have?
■ Every vertex has at most 3 loops.

- Every edge $u v$ has multiplicity at most 8 .
- Euler's formula yields $3 n+8(3 n-6)=27 n-48$ for $n \geq 3$.

We can improve this bound to $5 n-2$ for all $n \geq 1$.

Multigraphs with Angle-Constrained End Segments

- The potential $\Phi(P)$ of a face P is the sum of interior angles of P over all vertices in V incident to P.
Lemma. For every face P of an ortho-fin multigraph, $\Phi(P)$ is a multiple of $\pi / 2$, in particuar, $\Phi(P) \geq \pi / 2$.

Theorem. A weak ortho-fin multigraph has at most $5 n-2$ edges, and this bound is the best possible.
Summation over all faces yields $\sum_{P} \Phi(P) \leq 2 \pi \cdot n$.
Consequently, the number of faces is at most $f \leq \frac{2 \pi \cdot n}{\pi / 2}=4 n$. Combined with Euler's formua, $m=n+f-2 \Rightarrow m \leq 5 n-2$.

Multigraphs with Angle-Constrained End Segments

Theorem. A weak ortho-fin multigraph has at most $5 n-2$ edges, and this bound is the best possible.

Multigraphs with Angle-Constrained End Segments

Theorem. A weak ortho-fin multigraph has at most $5 n-2$ edges, and this bound is the best possible.

Multigraphs with Angle-Constrained End Segments

Theorem. A weak ortho-fin multigraph has at most $5 n-2$ edges, and this bound is the best possible.

The density of $R A C_{2}$ graphs

Let $G=(V, E)$ be a $R A C_{2}$ drawing.
Every edge has three segments:
end
segment

end | middle |
| :---: |
| segment |
| segment |

The density of $R A C_{2}$ graphs Let $G=(V, E)$ be a $R A C_{2}$ drawing.
Every edge has three segments:

- crossings form a symmetric relation on the segments.
Its transitive closure is an equivalence relation.
A block is the set of segments in an equivalence class.

The density of $R A C_{2}$ graphs

Consider one block of the $R A C_{2}$ drawing $G=(V, E)$.

- Every end segment is incident to a vertex,
- A vertex is incident to at most four end segments.

The density of $R A C_{2}$ graphs
Consider one block of the $R A C_{2}$ drawing $G=(V, E)$.
E Every end segment is incident to a vertex,

- A vertex is incident to at most four end segments.
Truncate the neighborhood of vertices to create a unique terminal on each end segment.

The density of $R A C_{2}$ graphs
Consider one block of the $R A C_{2}$ drawing $G=(V, E)$.

- Every end segment is incident to a vertex,
- A vertex is incident to at most four end segments. Truncate the neighborhood of vertices to create a unique terminal on each end segment. Find a spanning tree on the terminals within the block (as an arrangement of segments)

The density of $R A C_{2}$ graphs
Consider one block of the $R A C_{2}$ drawing $G=(V, E)$.
Every end segment is incident to a vertex,

- A vertex is incident to at most four end segments. Truncate the neighborhood of vertices to create a unique terminal on each end segment.
Find a spanning tree on the terminals within the block (as an arrangement of segments)

The density of $R A C_{2}$ graphs
Consider one block of the $R A C_{2}$ drawing $G=(V, E)$.

- Every end segment is incident to a vertex,
- A vertex is incident to at most four end segments.
Truncate the neighborhood of vertices to create a unique terminal on each end segment.
Find a spanning tree on the terminals within the block (as an arrangement of segments)
Find a perfect matching on the terminals (with noncrossing paths in the tree)

The density of $R A C_{2}$ graphs
Consider one block of the $R A C_{2}$ drawing $G=(V, E)$.

- Every end segment is incident to a vertex,
- A vertex is incident to at most four end segments.
Truncate the neighborhood of vertices to create a unique terminal on each end segment.

Find a spanning tree on the terminals within the block (as an arrangement of segments)
Find a perfect matching on the terminals (with noncrossing paths in the tree)
Extend the edges to the original vertices.

The density of $R A C_{2}$ graphs
Consider one block of the $R A C_{2}$ drawing $G=(V, E)$.

- Every end segment is incident to a vertex,
- A vertex is incident to at most four end segments.
Truncate the neighborhood of vertices to create a unique terminal on each end segment.

Find a spanning tree on the terminals within the block (as an arrangement of segments)
Find a perfect matching on the terminals (with noncrossing paths in the tree)
Extend the edges to the original vertices.

The density of $R A C_{2}$ graphs
Let $G=(V, E)$ be a $R A C_{2}$ drawing.
The union of these " matchings" over all blocks is a plane ortho-fin multigraph H, with at most $5 n-2$ edges.

An edge e of H

represents an edge f of the $R A C_{2}$ drawing
if an end segment of
ρe overlaps with an end segment of f.

The density of $R A C_{2}$ graphs
Let $G=(V, E)$ be a $R A C_{2}$ drawing.
The union of these " matchings" over all blocks is a plane ortho-fin multigraph H, with at most $5 n-2$ edges.

An edge e of H

represents an edge f of the $R A C_{2}$ drawing
if an end segment of
ρe overlaps with an end segment of f.

The H represents
$\leq 2(5 n-2)=10 n-4$ edges of G.
Consider the remaining edges of G (that are not represented).

The density of $R A C_{2}$ graphs
Let $G=(V, E)$ be a $R A C_{2}$ drawing.
The union of these " matchings" over all blocks is a plane ortho-fin multigraph H, with at most $5 n-2$ edges.

An edge e of H

represents an edge f of the $R A C_{2}$ drawing
if an end segment of
ρe overlaps with an end segment of f.

The H represents
$\leq 2(5 n-2)=10 n-4$ edges of G.
Consider the remaining edges of G (that are not represented).

The density of $R A C_{2}$ graphs
Let $G_{0}=\left(V, E_{0}\right)$ be the graph of all edges not represented by H. Lemma. In G_{0}, there is no end-end crossing, and each middle segment is crossed by at most one end segment.

The density of $R A C_{2}$ graphs
Let $G_{0}=\left(V, E_{0}\right)$ be the graph of all edges not represented by H.
Lemma. In G_{0}, there is no end-end crossing, and each middle segment is crossed by at most one end segment.

Partition G_{0} into two subgraphs: $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$,

- where $E_{1}=\{e \in E:$ the middle segment of e has negative slope $\}$, and $E_{2}=E_{0} \backslash E_{1}$.

Lemma. In each of $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$, all crossings are end-middle crossings, and every middle segment has at most one crossing.

The density of $R A C_{2}$ graphs
Lemma. In each of $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$, all crossings are end-middle crossings, and every middle segment has at most one crossing.

A graph is k-gap planar if it can be drawn such that (1) exactly two edges of G cross in any point,
(2) each crossing is assigned to one of its two crossing edges, and
(3) each edge is assigned with at most k of its crossings.

Lemma. Both $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ are 1-gap planar.

The density of $R A C_{2}$ graphs
Theorem (Bae, Baffier, Chun, Eades, Eickmeyer, Grilli, Hong, Korman, Montecchiani, Rutter, and Tóth, GD 2017). Every 1-gap planar graph on $n \geq 3$ vertices has at most $5 n-10$ edges, and this bound is the best possible.

- H represents at most $2(5 n-2)$ edges of G
- G_{1} and G_{2} each has at most $5 n-10$ edges.
- Overall, G has at most $2(5 n-2)+2(5 n-10)=20 n-24$ edges.

Open Problems

- How many edges can a $R A C_{2}$ graph on n vertices have? The maximum is between $10 n-O(1)$ and $20 n-24$.
- Haw many edges can a $R A C_{2}$ drawing have if we require simple topological drawings, where any two edges meet at most once (at a common endpoint or a crossing)?

- Can $R A C_{1}$ or $R A C_{2}$ graphs be recognized efficiently? Can they be recognized if all crossing edge pairs are given? It is known that recgnizing $R A C_{0}$ graphs is NP-hard (Argyriou, Bekos, and Symvonis, SOFSEM 2011).

