String graphs with precise number of intersections

Petr Chmel, Vít Jelínek
Charles University, Prague

Introduction

- Intersection graphs
- vertices ~ objects
- edges \sim nonempty intersections

Introduction

- Intersection graphs
- vertices \sim objects
- edges \sim nonempty intersections
- String graphs
- objects are curves in the plane

Introduction

- Intersection graphs
- vertices \sim objects
- edges \sim nonempty intersections
- String graphs
- objects are curves in the plane
- k-string graphs
- no more than k shared points per pair

Introduction

- Intersection graphs
- vertices \sim objects
- edges \sim nonempty intersections
- String graphs
- objects are curves in the plane
- k-string graphs
- no more than k shared points per pair

(=k)-string graphs

- k-string graphs: 1 to k intersection points per intersecting pair - ($=k$)-string graphs: k intersection points per intersecting pair

(=k)-string graphs

- k-string graphs: 1 to k intersection points per intersecting pair - ($=k$)-string graphs: k intersection points per intersecting pair

(=k)-string graphs

- k-string graphs: 1 to k intersection points per intersecting pair - ($=k)$-string graphs: k intersection points per intersecting pair no three curves share a common point and all common points must be crossings

(=k)-string graphs

- k-string graphs: 1 to k intersection points per intersecting pair - ($=k)$-string graphs: k intersection points per intersecting pair no three curves share a common point and all common points must be crossings

(=k)-string graphs

- k-string graphs: 1 to k intersection points per intersecting pair - ($=k)$-string graphs: k intersection points per intersecting pair no three curves share a common point and all common points must be crossings

Inclusions

- ($=k$)-STRING $\subseteq(=k+2)$-STRING

Inclusions

- ($=k$)-STRING $\subseteq(=k+2)$-STRING

Inclusions

- ($=k)$-STRING $\subseteq(=k+2)$-STRING

Inclusions

- ($=k$)-STRING $\subseteq(=k+2)$-STRING

Inclusions

- ($=k$)-STRING $\subseteq(=k+2)$-STRING
- $(=k)$-STRING $\subseteq(=4 k)$-STRING

Inclusions

- ($=k$)-STRING $\subseteq(=k+2)$-STRING
- ($=k)$-STRING $\subseteq(=4 k)$-STRING

Inclusions

- ($=k$)-STRING $\subseteq(=k+2)$-STRING
- ($=k)$-STRING $\subseteq(=4 k)$-STRING
- ($=k)$-STRING \cap BIPARTITE $\subseteq(=2 k)$-STRING

Noninclusions

- ($=k+1)$-STRING $\nsubseteq(=k)$-STRING

Noninclusions

- ($=k+1$)-STRING $\nsubseteq(=k)$-STRING
- ($=k+\ell$)-STRING $\nsubseteq(=k)$-STRING, for any $\ell \geq 1$

Noninclusions

- ($=k+1$)-STRING $\nsubseteq(=k)$-STRING
- ($=k+\ell$)-STRING $\nsubseteq(=k)$-STRING, for any $\ell \geq 1$
- (=2)-STRING $\nsubseteq(=2 k-1)$-STRING, for any $k \geq 1$

Noninclusions

- ($=k+1$)-STRING $\nsubseteq(=k)$-STRING
- ($=k+\ell$)-STRING $\nsubseteq(=k)$-STRING, for any $\ell \geq 1$
- (=2)-STRING $\nsubseteq(=2 k-1)$-STRING, for any $k \geq 1$
- ($=k$)-STRING $\nsubseteq(=4 k-2)$-STRING for k odd

Noninclusions

- ($=k+1$)-STRING $\nsubseteq(=k)$-STRING
- ($=k+\ell)$-STRING $\nsubseteq(=k)$-STRING, for any $\ell \geq 1$
- (=2)-STRING $\nsubseteq(=2 k-1)$-STRING, for any $k \geq 1$
- ($=k)$-STRING $\nsubseteq(=4 k-2)$-STRING for k odd
- ($=k$)-STRING $\nsubseteq(=k+1)$-STRING

Tool: Noodle-Forcing Lemma

- Originally by Chaplick, Jelínek, Kratochvíl, Vyskočil '12

Tool: Noodle-Forcing Lemma

- Originally by Chaplick, Jelínek, Kratochvíl, Vyskočil '12

$G^{\#}$

Tool: Noodle-Forcing Lemma

- Originally by Chaplick, Jelínek, Kratochvíl, Vyskočil '12

$G^{\#}$

Tool: Noodle-Forcing Lemma

- Originally by Chaplick, Jelínek, Kratochvíl, Vyskočil '12

$G^{\#}$

Tool: Noodle-Forcing Lemma

- Originally by Chaplick, Jelínek, Kratochvíl, Vyskočil '12

$G^{\#}$

Proving the noninclusions

- Example: $(=k+1)$-STRING $\nsubseteq(=k)$-STRING

What about k-string graphs?

What about k-string graphs?

- ($=k$)-STRING $\subseteq k$-STRING

What about k-string graphs?

- ($=k$)-STRING $\subseteq k$-STRING
- We can show k-STRING $\subseteq(=8 k)$-STRING

What about k-string graphs?

- ($=k$)-STRING $\subseteq k$-STRING
- We can show k-STRING $\subseteq(=8 k)$-STRING

What about k-string graphs?

- ($=k$)-STRING $\subseteq k$-STRING
- We can show k-STRING $\subseteq(=8 k)$-STRING
- k-STRING \subseteq PROPER $2 k$-STRING

What about k-string graphs?

- ($=k$)-STRING $\subseteq k$-STRING
- We can show k-STRING $\subseteq(=8 k)$-STRING
- k-STRING \subseteq PROPER $2 k$-STRING

What about k-string graphs?

- ($=k$)-STRING $\subseteq k$-STRING
- We can show k-STRING $\subseteq(=8 k)$-STRING
- k-STRING \subseteq PROPER $2 k$-STRING

What about k-string graphs?

- ($=k$)-STRING $\subseteq k$-STRING
- We can show k-STRING $\subseteq(=8 k)$-STRING
- k-STRING \subseteq PROPER $2 k$-STRING
- PROPER ℓ-STRING $\subseteq(=4 \ell)$-STRING

What about k-string graphs?

- ($=k$)-STRING $\subseteq k$-STRING
- We can show k-STRING $\subseteq(=8 k)$-STRING
- k-STRING \subseteq PROPER $2 k$-STRING
- PROPER ℓ-STRING $\subseteq(=4 \ell)$-STRING

What about k-string graphs?

- ($=k$)-STRING $\subseteq k$-STRING
- We can show k-STRING $\subseteq(=8 k)$-STRING
- k-STRING \subseteq PROPER $2 k$-STRING
- PROPER ℓ-STRING $\subseteq(=4 \ell)$-STRING

What about k-string graphs?

$\square(=k)$-STRING $\subseteq k$-STRING

- We can show k-STRING $\subseteq(=8 k)$-STRING
- k-STRING \subseteq PROPER $2 k$-STRING
- PROPER ℓ-STRING $\subseteq(=4 \ell)$-STRING

Open question

Is this the best possible?

Odd-string graphs

- Thus, we can define ODD-STRING $:=\bigcup_{k \in \mathbb{N}}(=2 k+1)$-STRING

Odd-string graphs

- Thus, we can define ODD-STRING $:=\bigcup_{k \in \mathbb{N}}(=2 k+1)$-STRING
- We already proved ODD-STRING \subsetneq STRING

Odd-string graphs

- Thus, we can define ODD-STRING $:=\bigcup_{k \in \mathbb{N}}(=2 k+1)$-STRING
- We already proved ODD-STRING \subsetneq STRING
- What is the complexity of recognizing these graphs?

Odd-string graphs

- Thus, we can define ODD-STRING $:=\bigcup_{k \in \mathbb{N}}(=2 k+1)$-STRING
- We already proved ODD-STRING \subsetneq STRING
- What is the complexity of recognizing these graphs?
- By Kratochvíl '91, ODD-STRING and ($=k$)-STRING are NP-hard to recognize

Odd-string graphs

- Thus, we can define ODD-STRING $:=\bigcup_{k \in \mathbb{N}}(=2 k+1)$-STRING
- We already proved ODD-STRING \subsetneq STRING
- What is the complexity of recognizing these graphs?
- By Kratochvíl '91, ODD-STRING and ($=k$)-STRING are NP-hard to recognize
- (= k)-STRING: membership in NP can be shown quite easily

Odd-string graphs

- Thus, we can define ODD-STRING $:=\bigcup_{k \in \mathbb{N}}(=2 k+1)$-STRING
- We already proved ODD-STRING \subsetneq STRING
- What is the complexity of recognizing these graphs?
- By Kratochvíl '91, odD-StRING and ($=k$)-STRING are NP-hard to recognize
- (= k)-STRING: membership in NP can be shown quite easily

Open question

Is recognizing odd-string graphs in NP? Weaker yet, is it decidable?

More open questions

- Is recognizing odd-string graphs decidable? Is it in NP?
- Is the inclusion k-STRING $\subseteq(=8 k)$-STRING best possible?
- What about deciding if $G \in(=k)$-STRING is in $(=\ell)$-STRING?

More open questions

- Is recognizing odd-string graphs decidable? Is it in NP?
- Is the inclusion k-STRING $\subseteq(=8 k)$-STRING best possible?
- What about deciding if $G \in(=k)$-STRING is in $(=\ell)$-STRING?
- $\ell:=k-2$

More open questions

- Is recognizing odd-string graphs decidable? Is it in NP?
- Is the inclusion k-String $\subseteq(=8 k)$-STRING best possible?
- What about deciding if $G \in(=k)$-STRING is in $(=\ell)$-STRING?
- $\ell:=k-2$
- $\ell:=k \pm c$

More open questions

- Is recognizing odd-string graphs decidable? Is it in NP?
- Is the inclusion k-String $\subseteq(=8 k)$-STRING best possible?
- What about deciding if $G \in(=k)$-STRING is in ($=\ell$)-STRING?
- $\ell:=k-2$
- $\ell:=k \pm c$

Thank you!

