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e nodes are geometric objects

e objects touch exactly when their nodes are adjacent
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objects: squares

contact: Intersecting boundary
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Our model

e objects are convex polygons in 3d

e objects touch if they share a full common edge

(side-contact)

e no three polygons can have a common edge
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Previous Results [Arseneva et al. '21]

e every hypercube graph can be represented in this model
— graph edge density can be as high as 2(nlog n)

e the Ksg; has no representation in this model
— #edges is at most O(n'®) by K8vari—-Sés—Turan theorem

e the K, 4 and the K35 have a representation in this model

e all planar graphs can be represented in this model,

even in 2d

e (related) if we consider nonconvex polygons or
corner-corner contacts [Evans et al. '19], all graphs can

be represented
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- New Theorem
The K350 has no side-contact realization with convex
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', consecutive segment intersection point (csi-point)
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Observations in 2d

e by cutting away 2 halfspaces from the convex set of

segments we can remove at most 3 csi points

e the triangle between a csi-point and its segments

contains all si-points of the segments “in between”
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Back to 3d

e assume we have a realization of K359 with 3 and

250 blue polygons

e the suppoting planes of the 3 define an

arrangement with 8 octants

every blue polygon has to lie

IN one octant

only 5 octants can share a
> piece of all 3

there is one octant C with

> 50 blue polygons
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Applying the 2d Ideas
part of

(\ octant C

continue with this set

and repeat on the two

other faces of C

supporting plane of 1st

ignore some blue
polygons that have
a side on an edge
of C — 44 left

consider every 11th
segment where
blue und red

polygons touch

one csi-point lies in

the the gray area

also all si-points of
these 12 segments
lies in the the gray

darea
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Again back to 3d

e we find two blue polygons b and b" in C, with side e;/e! on the

bounding face f; of C ....

e ... such that the si-point of e and €/ lies in the interior of f;

/ L a— the supporting planes of
ex| e E . .
e 2/ i b; and b/ intersect in the
three si-points
f .
€3 (not on a line)
f ..
/
3 e /e1 — they coincide
To—un
— all and thus all blue polygons are collinear, only

possible for planar graphs — contradiction

— improved bound on the edge density: O(n%/3)
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- New Theorem
The K3g has a side-contact realization with convex

polygons in 3d

ldea to exploit: find a good corner-contact-representation

——

move the blue

supporting

plane down
—————

all three have the

blue polygon on one side
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A good corner-contact realization of the Ksg

exact coordinates and script to check for the “good”-property are in

the arxiv-version



