Mutual Witness Proximity Drawings of Isomorphic Trees

Carolina Haase Philipp Kindermann William J. Lenhart Giuseppe Liotta

Mutual Witness Proximity Drawings

Mutual Witness Proximity Drawings

Mutual Witness Proximity Drawings

u^{\bullet}
${ }^{\bullet}$ v

Mutual Witness Proximity Drawings

Gabriel Drawings:
u
\bullet_{v}

Mutual Witness Proximity Drawings

Gabriel Drawings:

Mutual Witness Gabriel Drawings:

Mutual Witness Proximity Drawings

Gabriel Drawings:

Mutual Witness Gabriel Drawings:

Mutual Witness Proximity Drawings

Gabriel Drawings:

Mutual Witness Gabriel Drawings:

Mutual Witness Proximity Drawings

Gabriel Drawings:

Mutual Witness Gabriel Drawings:

Mutual Witness Proximity Drawings

Gabriel Drawings:

Mutual Witness Gabriel Drawings:

Mutual Witness Proximity Drawings

Gabriel Drawings:

Mutual Witness Gabriel Drawings:

Mutual Witness Proximity Drawings

Gabriel Drawings:

Mutual Witness Gabriel Drawings:

Mutual Witness Proximity Drawings

Gabriel Drawings:

Mutual Witness Gabriel Drawings:

Mutual Witness Proximity Drawings

Gabriel Drawings:

Mutual Witness Gabriel Drawings:

Mutual Witness Proximity Drawings

Gabriel Drawings:

Mutual Witness Gabriel Drawings:

Mutual Witness Proximity Drawings

Gabriel Drawings:

β-Proximity Drawings:

Mutual Witness Gabriel Drawings:

Mutual Witness Proximity Drawings

Gabriel Drawings:
[Gabriel, Sokal '69]

Mutual Witness Gabriel Drawings:

β-Proximity Drawings:

two disks:

Mutual Witness Proximity Drawings

Gabriel Drawings:

Mutual Witness Gabriel Drawings:

β-Proximity Drawings:

two disks:
 radius $:=\frac{\beta d(u, v)}{2}$

7

Mutual Witness Proximity Drawings

Gabriel Drawings:

Mutual Witness Gabriel Drawings:

β-Proximity Drawings:

two disks:
radius $:=\frac{\beta d(u, v)}{2}$
center on the line through u and v

Mutual Witness Proximity Drawings

Gabriel Drawings:

Mutual Witness Gabriel Drawings:

β-Proximity Drawings:

two disks:
radius $:=\frac{\beta d(u, v)}{2}$
center on the line through u and v

Mutual Witness Proximity Drawings

Gabriel Drawings:

Mutual Witness Gabriel Drawings:

β-Proximity Drawings:

two disks:
 radius : $=\frac{\beta d(u, v)}{2}$

center on the line through u and v

Mutual Witness Proximity Drawings

Gabriel Drawings:

Mutual Witness Gabriel Drawings:

β-Proximity Drawings:

two disks:

radius : $=\frac{\beta d(u, v)}{2}$
center on the line through u and v

Mutual Witness Proximity Drawings

Gabriel Drawings:

Mutual Witness Gabriel Drawings:

β-Proximity Drawings:

two disks:

radius := $\frac{\beta d(u, v)}{2}$
center on the line through u and v

$$
\beta=2
$$

Mutual Witness Proximity Drawings

Gabriel Drawings:

Mutual Witness Gabriel Drawings:

β-Proximity Drawings:

two disks:

radius := $\frac{\beta d(u, v)}{2}$
center on the line through u and v

$$
\beta=2
$$

Mutual Witness Proximity Drawings

Gabriel Drawings:

Mutual Witness Gabriel Drawings:

$$
\beta \text {-Proximity Drawings: }
$$

two disks:

radius := $\frac{\beta d(u, v)}{2}$
center on the line through u and v

Mutual Witness Proximity Drawings

Gabriel Drawings:

Mutual Witness Gabriel Drawings:

β-Proximity Drawings:

two disks:

radius : $=\frac{\beta d(u, v)}{2}$
center on the line through u and v

Mutual Witness Proximity Drawings

Gabriel Drawings:

Mutual Witness Gabriel Drawings:

β-Proximity Drawings:

two disks:

radius : $=\frac{\beta d(u, v)}{2}$
center on the line through u and v

Mutual Witness Proximity Drawings

Gabriel Drawings:

Mutual Witness Gabriel Drawings:

β-Proximity Drawings:

two disks:

radius : $=\frac{\beta d(u, v)}{2}$
center on the line through u and v

Mutual Witness Proximity Drawings

Gabriel Drawings:
 β-Proximity Drawings:

two disks:

radius : $=\frac{\beta d(u, v)}{2}$
center on the line through u and v

Mutual Witness Gabriel Drawings:

Mutual Witness Proximity Drawings

Gabriel Drawings:
[Gabriel, Sokal '69]

Mutual Witness Gabriel Drawings:

β-Proximity Drawings:

two disks:

radius : $=\frac{\beta d(u, v)}{2}$
center on the line through u and v

Mutual Witness Proximity Drawings

Gabriel Drawings:
[Gabriel, Sokal '69]

Mutual Witness
Gabriel Drawings:

β-Proximity Drawings:

two disks:

radius : $=\frac{\beta d(u, v)}{2}$
center on the line through u and v

Mutual Witness Proximity Drawings

Gabriel Drawings:

Mutual Witness Gabriel Drawings:

β-Proximity Drawings:
two disks:
radius $:=\frac{\dot{\beta} d(u, v)}{2}$
center on the line through u and v

Our Contribution

Our Contribution

(1) Mutual Witness Gabriel (MWG) Drawings
of isomorphic caterpillars

Our Contribution

(1) Mutual Witness Gabriel (MWG) Drawings of isomorphic caterpillars

Our Contribution

(1) Mutual Witness Gabriel (MWG) Drawings
of isomorphic caterpillars

Our Contribution

(1) Mutual Witness Gabriel (MWG) Drawings
of isomorphic caterpillars

Our Contribution

(1) Mutual Witness Gabriel (MWG) Drawings
of isomorphic caterpillars

Our Contribution

(1) Mutual Witness Gabriel (MWG) Drawings
of isomorphic caterpillars

(2) Mutual Witness β Drawings of isomorphic trees

Our Contribution

(1) Mutual Witness Gabriel (MWG) Drawings
of isomorphic caterpillars

(2) Mutual Witness β Drawings of isomorphic trees

Our Contribution

(1) Mutual Witness Gabriel (MWG) Drawings
of isomorphic caterpillars

(2) Mutual Witness β Drawings of isomorphic trees

Our Contribution

(1) Mutual Witness Gabriel (MWG) Drawings
of isomorphic caterpillars

(2) Mutual Witness β Drawings of isomorphic trees

$$
\text { for all } \beta \geq 1
$$

Our Contribution

(1) Mutual Witness Gabriel (MWG) Drawings
of isomorphic caterpillars

(2) Mutual Witness β Drawings of isomorphic trees

$$
\text { for all } \beta \geq 1
$$

(3) Mutual Witness β Drawings of almost isomorphic trees

Our Contribution

(1) Mutual Witness Gabriel (MWG) Drawings
of isomorphic caterpillars

(2) Mutual Witness β Drawings of isomorphic trees

$$
\text { for all } \beta \geq 1
$$

(3) Mutual Witness β Drawings of almost isomorphic trees

Our Contribution

(1) Mutual Witness Gabriel (MWG) Drawings of isomorphic caterpillars

(2) Mutual Witness β Drawings of isomorphic trees

$$
\text { for all } \beta \geq 1
$$

(3) Mutual Witness β Drawings of almost isomorphic trees

Winged Parallelograms

Winged Parallelograms

Winged Parallelograms

Winged Parallelograms

Winged Parallelograms

Winged Parallelograms

Winged Parallelograms

Winged Parallelograms

Winged Parallelograms

$i=0,1$
(P1) $s_{1-i}, a_{1-i} \notin$ Gabriel Disk a_{i}, z_{i}

Winged Parallelograms

$i=0,1$
(P1) $s_{1-i}, a_{1-i} \notin$ Gabriel Disk a_{i}, z_{i}

Winged Parallelograms

Winged Parallelograms

Winged Parallelograms

Winged Parallelograms

$i=0,1$
(P1) $s_{1-i}, a_{1-i} \notin$ Gabriel Disk a_{i}, z_{i}

Winged Parallelograms

$i=0,1$
(P1) $s_{1-i}, a_{1-i} \notin$ Gabriel Disk a_{i}, z_{i}
(P2) $b_{1-i} \in$ Gabriel Disk s_{i}, t_{i}

Winged Parallelograms

$i=0,1$
(P1) $s_{1-i}, a_{1-i} \notin$ Gabriel Disk a_{i}, z_{i}
(P2) $b_{1-i} \in$ Gabriel Disk s_{i}, t_{i}

Winged Parallelograms

$i=0,1$
(P1) $s_{1-i}, a_{1-i} \notin$ Gabriel Disk a_{i}, z_{i}
(P2) $b_{1-i} \in$ Gabriel Disk s_{i}, t_{i}

Winged Parallelograms

$i=0,1$
(P1) $s_{1-i}, a_{1-i} \notin$ Gabriel Disk a_{i}, z_{i}
(P2) $b_{1-i} \in$ Gabriel Disk s_{i}, t_{i}
(P3) $b_{1-i} \in$ Gabriel Disk a_{i}, t_{i}

Winged Parallelograms

$i=0,1$
(P1) $s_{1-i}, a_{1-i} \notin$ Gabriel Disk a_{i}, z_{i}
(P2) $b_{1-i} \in$ Gabriel Disk s_{i}, t_{i}
(P3) $b_{1-i} \in$ Gabriel Disk a_{i}, t_{i}

Winged Parallelogram Drawings

MWG Drawings of Isomorphic Caterpillars

MWG Drawings of Isomorphic Caterpillars

MWG Drawings of Isomorphic Caterpillars

(P1) ensures that there are edges between the root of $T_{i, j}$ and $T_{i, j+1}$.

MWG Drawings of Isomorphic Caterpillars

(P1) ensures that there are edges between the root of $T_{i, j}$ and $T_{i, j+1}$.

MWG Drawings of Isomorphic Caterpillars

(P1) ensures that there are edges between the root of $T_{i, j}$ and $T_{i, j+1}$.
(P2) ensures that there are no edges between leaves of $T_{i, j}$ and any vertex of $T_{i, j+1}$.

MWG Drawings of Isomorphic Caterpillars

(P1) ensures that there are edges between the root of $T_{i, j}$ and $T_{i, j+1}$.
(P2) ensures that there are no edges between leaves of $T_{i, j}$ and any vertex of $T_{i, j+1}$.

MWG Drawings of Isomorphic Caterpillars

(P1) ensures that there are edges between the root of $T_{i, j}$ and $T_{i, j+1}$.
(P2) ensures that there are no edges between leaves of $T_{i, j}$ and any vertex of $T_{i, j+1}$.

MWG Drawings of Isomorphic Caterpillars

(P1) ensures that there are edges between the root of $T_{i, j}$ and $T_{i, j+1}$.
(P2) ensures that there are no edges between leaves of $T_{i, j}$ and any vertex of $T_{i, j+1}$.
(P3) ensures that there are no edges between the root of $T_{i, j}$ and leaves of $T_{i, j+1}$.

MWG Drawings of Isomorphic Caterpillars

(P1) ensures that there are edges between the root of $T_{i, j}$ and $T_{i, j+1}$.
(P2) ensures that there are no edges between leaves of $T_{i, j}$ and any vertex of $T_{i, j+1}$.
(P3) ensures that there are no edges between the root of $T_{i, j}$ and leaves of $T_{i, j+1}$.

Our Contribution

(1) Mutual Witness Gabriel (MWG) Drawings of isomorphic caterpillars

(2) Mutual Witness β Drawings of isomorphic trees

$$
\text { for all } \beta \geq 1
$$

(3) Mutual Witness β Drawings of almost isomorphic trees

Our Contribution

(1) Mutual Witness Gabriel (MWG) Drawings
of isomorphic caterpillars

(2) Mutual Witness β Drawings of isomorphic trees

```
for all }\beta\geq
```

(3) Mutual Witness β Drawings of almost isomorphic trees

MW β-Proximity Drawings of Isomorphic Trees

MW β-Proximity Drawings of Isomorphic Trees

Subtrees inside parallelograms:

MW β-Proximity Drawings of Isomorphic Trees

Subtrees inside parallelograms:

MW β-Proximity Drawings of Isomorphic Trees

Subtrees inside parallelograms:
$\begin{array}{ll}a_{0} & \text { (C1) } x\left(a_{0}\right)<x\left(b_{0}\right)<x\left(b_{1}\right)<x\left(a_{1}\right)\end{array}$

MW β-Proximity Drawings of Isomorphic Trees

Subtrees inside parallelograms:

MW β-Proximity Drawings of Isomorphic Trees

Subtrees inside parallelograms:

MW β-Proximity Drawings of Isomorphic Trees

Subtrees inside parallelograms:

MW β-Proximity Drawings of Isomorphic Trees

Subtrees inside parallelograms:

Step 1:

MW β-Proximity Drawings of Isomorphic Trees

Subtrees inside parallelograms:

Step 1: place subtrees next to each other

MW β-Proximity Drawings of Isomorphic Trees

Subtrees inside parallelograms:

Step 1: place subtrees next to each other

MW β-Proximity Drawings of Isomorphic Trees

Subtrees inside parallelograms:

Step 1: place subtrees next to each other

MW β-Proximity Drawings of Isomorphic Trees

Subtrees inside parallelograms:

Step 1: place subtrees next to each other

MW β-Proximity Drawings of Isomorphic Trees

Subtrees inside parallelograms:

Step 1: place subtrees next to each other

MW β-Proximity Drawings of Isomorphic Trees

Subtrees inside parallelograms:

Step 1: place subtrees next to each other

Step 2:

MW β-Proximity Drawings of Isomorphic Trees

Subtrees inside parallelograms:

Step 1: place subtrees next to each other

Step 2:

add root to subtrees

MW β-Proximity Drawings of Isomorphic Trees

Subtrees inside parallelograms:

Step 1: place subtrees next to each other

Step 2:

add root to subtrees

MW β-Proximity Drawings of Isomorphic Trees

Subtrees inside parallelograms:

Step 1: place subtrees next to each other

Step 2:

add root to subtrees

MW β-Proximity Drawings of Isomorphic Trees

Subtrees inside parallelograms:

Step 1: place subtrees next to each other

Step 2:

add root to subtrees

MW β-Proximity Drawings of Isomorphic Trees

Subtrees inside parallelograms:

Step 1: place subtrees next to each other

Step 2:

add root to subtrees

MW β-Proximity Drawings of Isomorphic Trees

Subtrees inside parallelograms:

Step 1: place subtrees next to each other

Step 2:

add root to subtrees

MW β-Proximity Drawings of Isomorphic Trees

Subtrees inside parallelograms:

Step 1: place subtrees next to each other

Step 2:

MW β-Proximity Drawings of Isomorphic Trees

Subtrees inside parallelograms:

Step 1: place subtrees next to each other

Step 2:
add root to subtrees

Step 3:

MW β-Proximity Drawings of Isomorphic Trees

Subtrees inside parallelograms:

Step 1: place subtrees next to each other

Step 2:

Step 3:

rotate, such that (C1), (C2) and (C3) are satisfied

MW β-Proximity Drawings of Isomorphic Trees

Subtrees inside parallelograms:

Step 1: place subtrees next to each other

Step 2:

Step 3:

rotate, such that (C1), (C2) and (C3) are satisfied

Our Contribution

(1) Mutual Witness Gabriel (MWG) Drawings
of isomorphic caterpillars

(2) Mutual Witness β Drawings of isomorphic trees

```
for all }\beta\geq
```

(3) Mutual Witness β Drawings of almost isomorphic trees

Our Contribution

(1) Mutual Witness Gabriel (MWG) Drawings
of isomorphic caterpillars

(2) Mutual Witness β Drawings of isomorphic trees

$$
\text { for all } \beta \geq 1
$$

(3) Mutual Witness β Drawings of almost isomorphic trees

MW β-Proximity Drawings of Almost Isomorphic Trees

MW β-Proximity Drawings of Almost Isomorphic Trees

MW β-Proximity Drawings of Almost Isomorphic Trees

MW β-Proximity Drawings of Almost Isomorphic Trees

MW β-Proximity Drawings of Almost Isomorphic Trees

MW β-Proximity Drawings of Almost Isomorphic Trees

MW β-Proximity Drawings of Almost Isomorphic Trees

Theorem

Let (T, r) be a rooted tree and let \mathcal{L} be a sparse set of leaves of T. Then the pair $\langle T, T \backslash \mathcal{L}\rangle$ of trees admits an MW- β drawing for all $\beta \in[1, \infty]$.

MW β-Proximity Drawings of Almost Isomorphic Trees

Theorem

Let (T, r) be a rooted tree and let \mathcal{L} be a sparse set of leaves of T. Then the pair $\langle T, T \backslash \mathcal{L}\rangle$ of trees admits an MW- β drawing for all $\beta \in[1, \infty]$.

MW β-Proximity Drawings of Almost Isomorphic Trees

Theorem

Let (T, r) be a rooted tree and let \mathcal{L} be a sparse set of leaves of T. Then the pair $\langle T, T \backslash \mathcal{L}\rangle$ of trees admits an MW- β drawing for all $\beta \in[1, \infty]$.

MW β-Proximity Drawings of Almost Isomorphic Trees

Theorem

Let (T, r) be a rooted tree and let \mathcal{L} be a sparse set of leaves of T. Then the pair $\langle T, T \backslash \mathcal{L}\rangle$ of trees admits an MW- β drawing for all $\beta \in[1, \infty]$.

MW β-Proximity Drawings of Almost Isomorphic Trees

Theorem

Let (T, r) be a rooted tree and let \mathcal{L} be a sparse set of leaves of T. Then the pair $\langle T, T \backslash \mathcal{L}\rangle$ of trees admits an MW- β drawing for all $\beta \in[1, \infty]$.
(1) at least one sibling, no sibling in \mathcal{L}

MW β-Proximity Drawings of Almost Isomorphic Trees

Theorem

Let (T, r) be a rooted tree and let \mathcal{L} be a sparse set of leaves of T. Then the pair $\langle T, T \backslash \mathcal{L}\rangle$ of trees admits an MW- β drawing for all $\beta \in[1, \infty]$.
(1) at least one sibling, no sibling in \mathcal{L}
(2) at least one cousin $w \notin \mathcal{L}$, no sibling of w in \mathcal{L}

MW β-Proximity Drawings of Almost Isomorphic Trees

Theorem

Let (T, r) be a rooted tree and let \mathcal{L} be a sparse set of leaves of T. Then the pair $\langle T, T \backslash \mathcal{L}\rangle$ of trees admits an MW- β drawing for all $\beta \in[1, \infty]$.

Corollary

(1) at least one sibling, no sibling in \mathcal{L}
(2) at least one cousin $w \notin \mathcal{L}$, no sibling of w in \mathcal{L}

For any $m \geq 1$ and $n=6 m+1$, there exist tree pairs $\left\langle T_{0}, T_{1}\right\rangle$ with $\left|V\left(T_{1}\right)\right| \leq 1+\frac{5}{6}\left(\left|V\left(T_{0}\right)\right|-1\right)$ that admit an MW- β drawing for all $\beta \in[1, \infty]$.

MW β-Proximity Drawings of Almost Isomorphic Trees

Theorem

Let (T, r) be a rooted tree and let \mathcal{L} be a sparse set of leaves of T. Then the pair $\langle T, T \backslash \mathcal{L}\rangle$ of trees admits an MW- β drawing for all $\beta \in[1, \infty]$.

Corollary

(1) at least one sibling, no sibling in \mathcal{L}
(2) at least one cousin $w \notin \mathcal{L}$, no sibling of w in \mathcal{L}

For any $m \geq 1$ and $n=6 m+1$, there exist tree pairs $\left\langle T_{0}, T_{1}\right\rangle$ with $\left|V\left(T_{1}\right)\right| \leq 1+\frac{5}{6}\left(\left|V\left(T_{0}\right)\right|-1\right)$ that admit an MW- β drawing for all $\beta \in[1, \infty]$.

MW β-Proximity Drawings of Almost Isomorphic Trees

Theorem

Let (T, r) be a rooted tree and let \mathcal{L} be a sparse set of leaves of T. Then the pair $\langle T, T \backslash \mathcal{L}\rangle$ of trees admits an MW- β drawing for all $\beta \in[1, \infty]$.

Corollary

(1) at least one sibling, no sibling in \mathcal{L}
(2) at least one cousin $w \notin \mathcal{L}$, no sibling of w in \mathcal{L}

For any $m \geq 1$ and $n=6 m+1$, there exist tree pairs $\left\langle T_{0}, T_{1}\right\rangle$ with $\left|V\left(T_{1}\right)\right| \leq 1+\frac{5}{6}\left(\left|V\left(T_{0}\right)\right|-1\right)$ that admit an MW- β drawing for all $\beta \in[1, \infty]$.

MW β-Proximity Drawings of Almost Isomorphic Trees

Theorem

Let (T, r) be a rooted tree and let \mathcal{L} be a sparse set of leaves of T. Then the pair $\langle T, T \backslash \mathcal{L}\rangle$ of trees admits an MW- β drawing for all $\beta \in[1, \infty]$.

Corollary

(1) at least one sibling, no sibling in \mathcal{L}
(2) at least one cousin $w \notin \mathcal{L}$, no sibling of w in \mathcal{L}

For any $m \geq 1$ and $n=6 m+1$, there exist tree pairs $\left\langle T_{0}, T_{1}\right\rangle$ with $\left|V\left(T_{1}\right)\right| \leq 1+\frac{5}{6}\left(\left|V\left(T_{0}\right)\right|-1\right)$ that admit an MW- β drawing for all $\beta \in[1, \infty]$.

MW β-Proximity Drawings of Almost Isomorphic Trees

Theorem

Let (T, r) be a rooted tree and let \mathcal{L} be a sparse set of leaves of T. Then the pair $\langle T, T \backslash \mathcal{L}\rangle$ of trees admits an MW- β drawing for all $\beta \in[1, \infty]$.

Corollary

(1) at least one sibling, no sibling in \mathcal{L}
(2) at least one cousin $w \notin \mathcal{L}$, no sibling of w in \mathcal{L}

For any $m \geq 1$ and $n=6 m+1$, there exist tree pairs $\left\langle T_{0}, T_{1}\right\rangle$ with $\left|V\left(T_{1}\right)\right| \leq 1+\frac{5}{6}\left(\left|V\left(T_{0}\right)\right|-1\right)$ that admit an MW- β drawing for all $\beta \in[1, \infty]$.

Summary

Summary

Theorem 1

Any pair $\left\langle T_{0}, T_{1}\right\rangle$ of isomorphic caterpillars admits a linearly separable MW-Gabriel drawing.

Summary

Theorem 1

Any pair $\left\langle T_{0}, T_{1}\right\rangle$ of isomorphic caterpillars admits a linearly separable MW-Gabriel drawing.

Theorem 2
Any two isomorphic trees $\left\langle T_{0}, T_{1}\right\rangle$ admit a MW- β-drawing for all $\beta \in[1, \infty]$.

Summary

Theorem 1

Any pair $\left\langle T_{0}, T_{1}\right\rangle$ of isomorphic caterpillars admits a linearly separable MW-Gabriel drawing.

Theorem 2

Any two isomorphic trees $\left\langle T_{0}, T_{1}\right\rangle$ admit a MW- β-drawing for all $\beta \in[1, \infty]$.

Theorem 3

Let (T, r) be a rooted tree and let \mathcal{L} be a sparse set of leaves of T. Then the pair $\langle T, T \backslash \mathcal{L}\rangle$ of trees admits an MW- β drawing for all $\beta \in[1, \infty]$.

Summary

Theorem 1

Any pair $\left\langle T_{0}, T_{1}\right\rangle$ of isomorphic caterpillars admits a linearly separable MW-Gabriel drawing.

Theorem 2

Any two isomorphic trees $\left\langle T_{0}, T_{1}\right\rangle$ admit a MW- β-drawing for all $\beta \in[1, \infty]$.

Theorem 3

Let (T, r) be a rooted tree and let \mathcal{L} be a sparse set of leaves of T. Then the pair $\langle T, T \backslash \mathcal{L}\rangle$ of trees admits an MW- β drawing for all $\beta \in[1, \infty]$.

Open Questions

Summary

Theorem 1

Any pair $\left\langle T_{0}, T_{1}\right\rangle$ of isomorphic caterpillars admits a linearly separable MW-Gabriel drawing.

Theorem 2

Any two isomorphic trees $\left\langle T_{0}, T_{1}\right\rangle$ admit a MW- β-drawing for all $\beta \in[1, \infty]$.

Theorem 3

Let (T, r) be a rooted tree and let \mathcal{L} be a sparse set of leaves of T. Then the pair $\langle T, T \backslash \mathcal{L}\rangle$ of trees admits an MW- β drawing for all $\beta \in[1, \infty]$.

Open Questions

- linearly separable drawings for any pair of isomorphic trees?

Summary

Theorem 1

Any pair $\left\langle T_{0}, T_{1}\right\rangle$ of isomorphic caterpillars admits a linearly separable MW-Gabriel drawing.

Theorem 2

Any two isomorphic trees $\left\langle T_{0}, T_{1}\right\rangle$ admit a MW- β-drawing for all $\beta \in[1, \infty]$.

Theorem 3

Let (T, r) be a rooted tree and let \mathcal{L} be a sparse set of leaves of T.
Then the pair $\langle T, T \backslash \mathcal{L}\rangle$ of trees admits an MW- β drawing for all $\beta \in[1, \infty]$.

Open Questions

- linearly separable drawings for any pair of isomorphic trees?
- characterization of pairs of non-isomorphic trees that are drawable?

