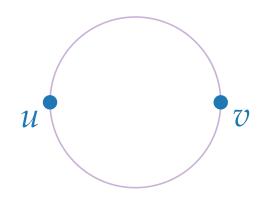
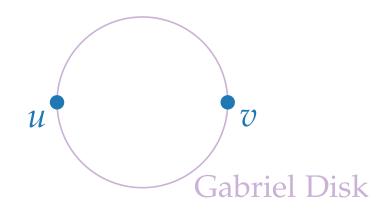


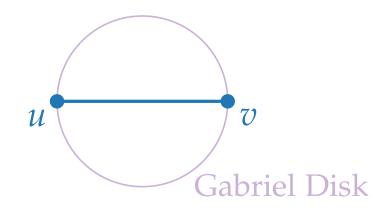
Mutual Witness Proximity Drawings of Isomorphic Trees

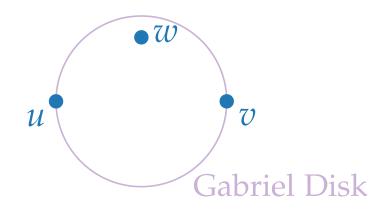
Carolina HaasePhilipp KindermannWilliam J. LenhartGiuseppe Liotta

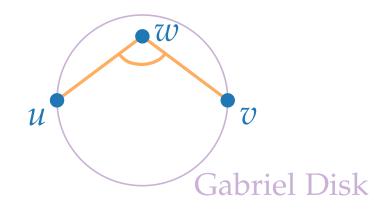
u•v

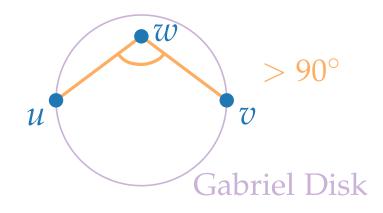


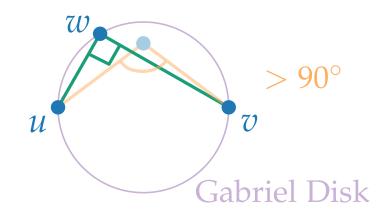


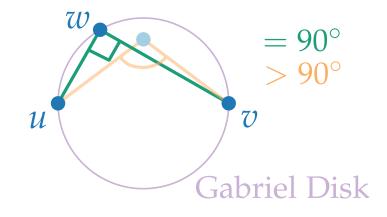


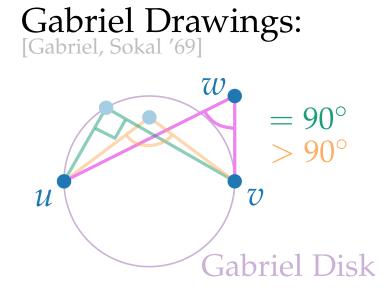


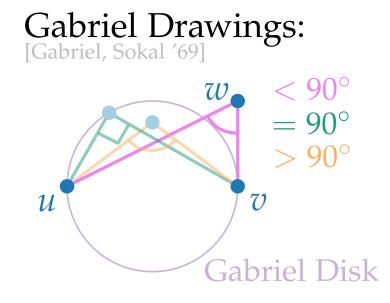


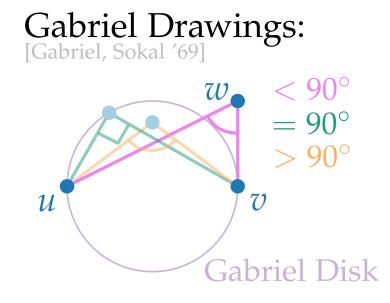


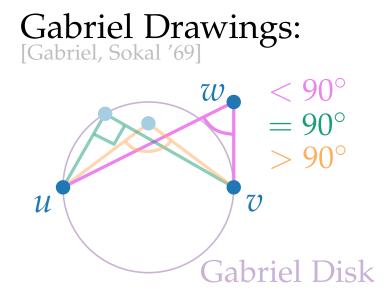


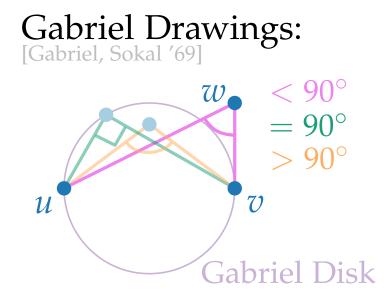




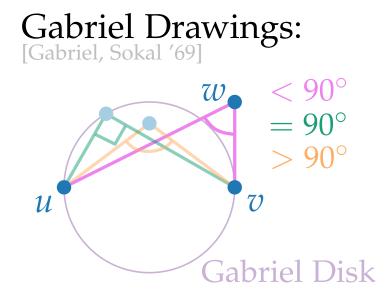




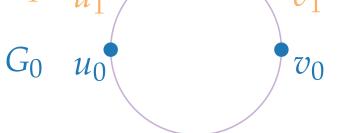


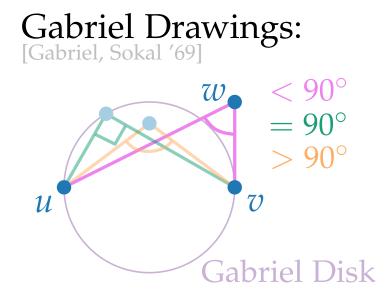


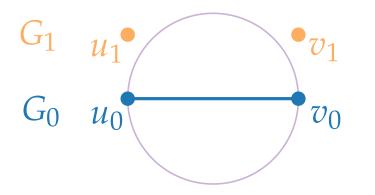
Mutual Witness
Gabriel Drawings: G_1 u_1^{\bullet} v_1 G_0 u_0^{\bullet} v_0

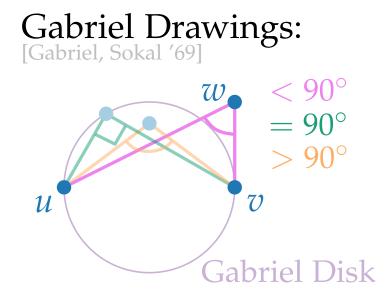


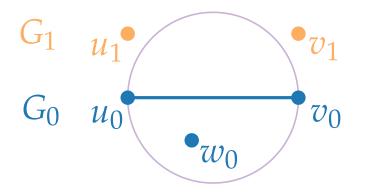
Mutual Witness Gabriel Drawings: $G_1 \quad u_1 \quad v_1$

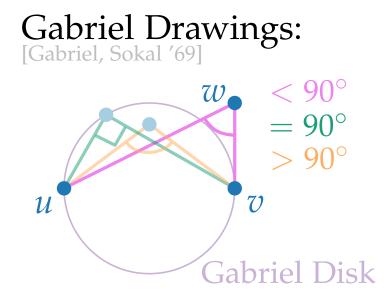


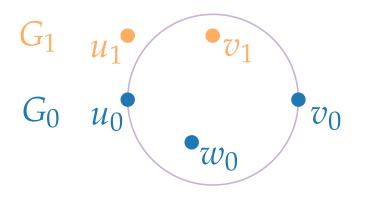




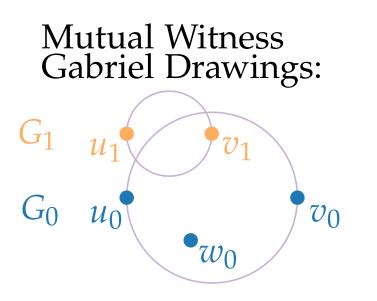




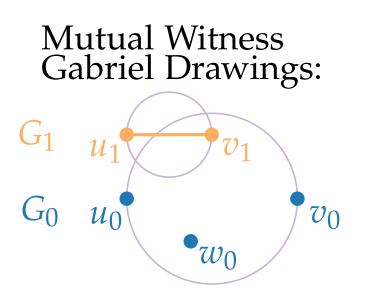


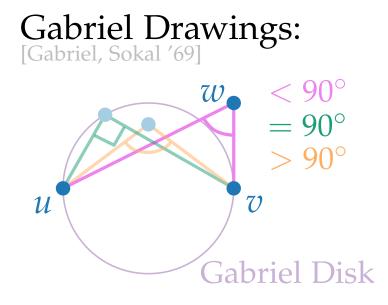


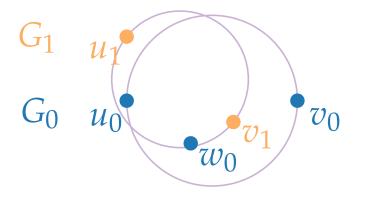


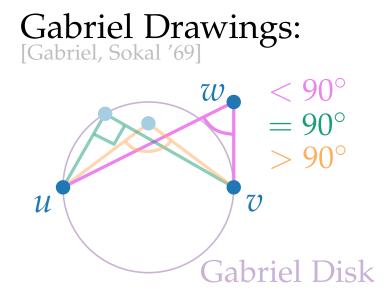


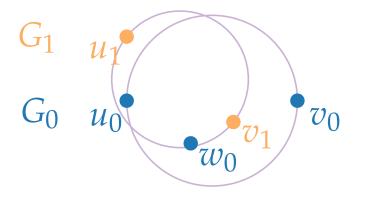


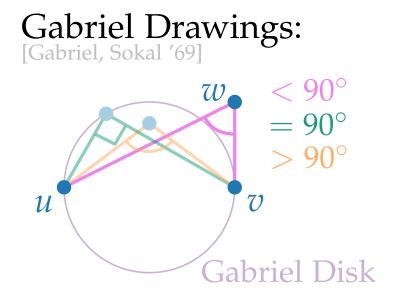




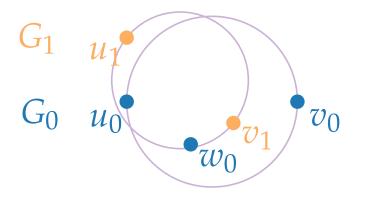


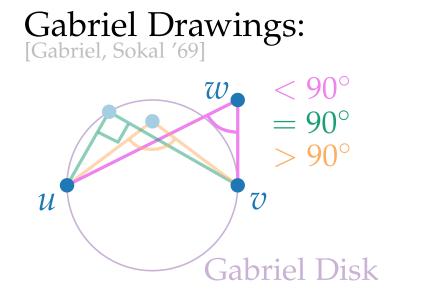




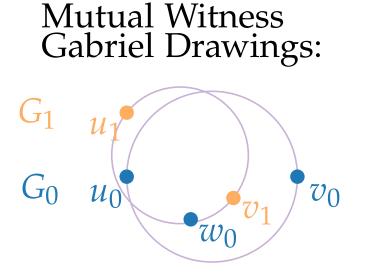


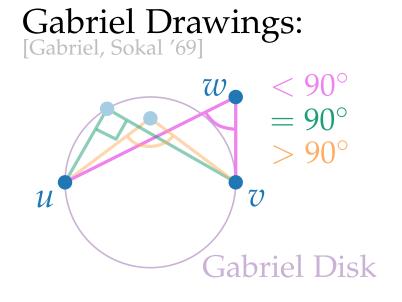
Mutual Witness Gabriel Drawings:





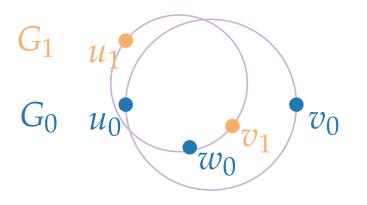
two disks:



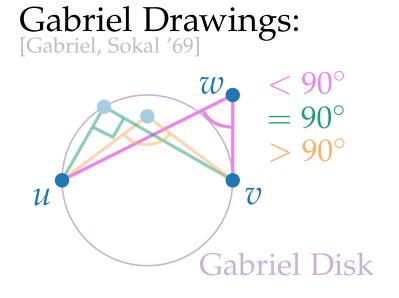


two disks: radius := $\frac{\beta d(u,v)}{2}$

Mutual Witness Gabriel Drawings:

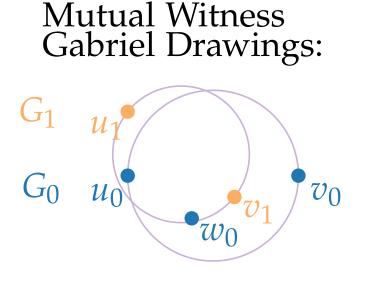


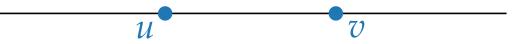
u v

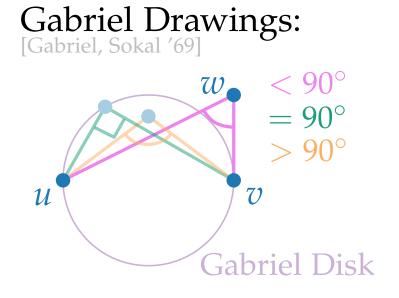


two disks: radius := $\frac{\beta d(u,v)}{2}$

center on the line through *u* and *v*

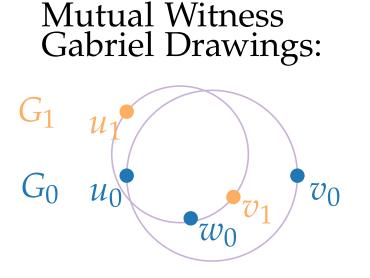


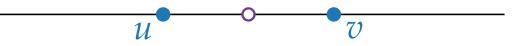


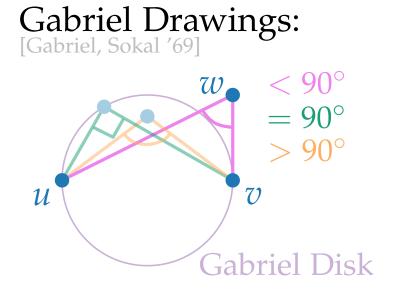


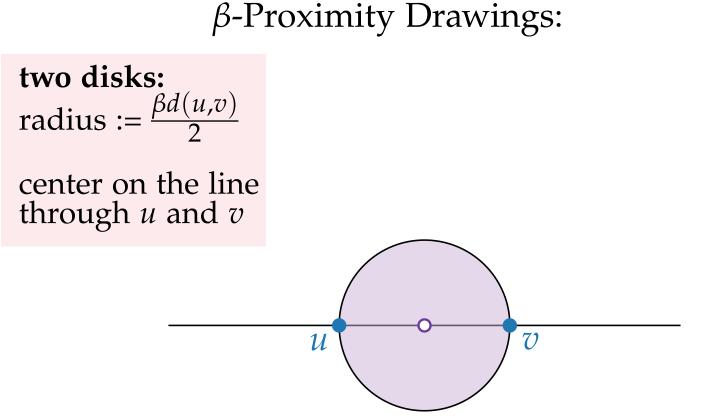
two disks: radius := $\frac{\beta d(u,v)}{2}$

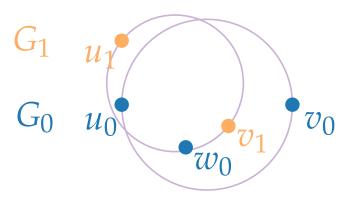
center on the line through *u* and *v*



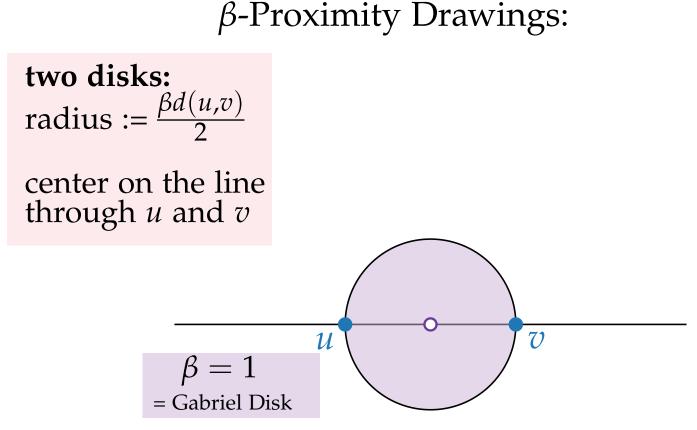


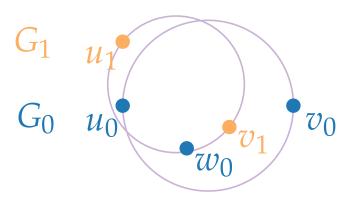


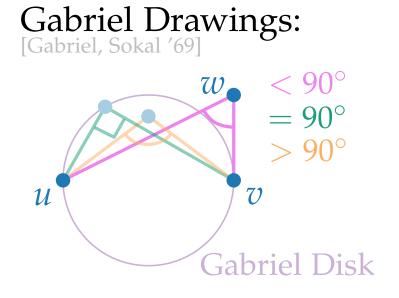




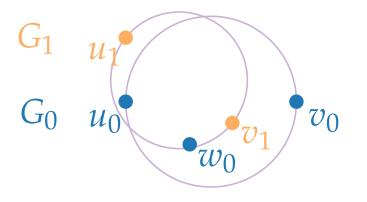


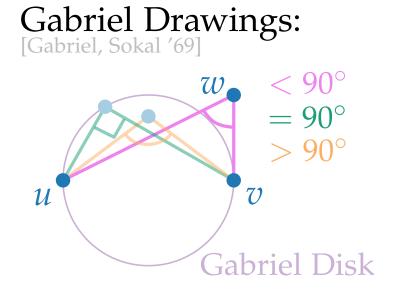




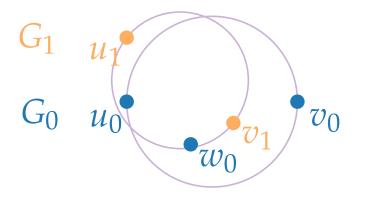


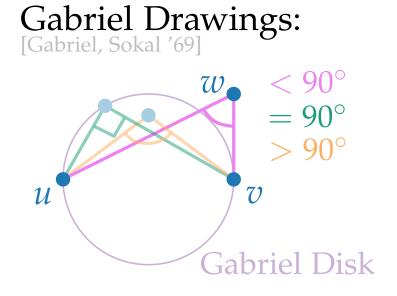
 β -Proximity Drawings: two disks: radius := $\frac{\beta d(u,v)}{2}$ center on the line through u and v \mathcal{U} U $\beta = 1$ = Gabriel Disk $\beta = 2$



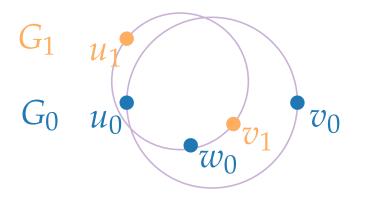


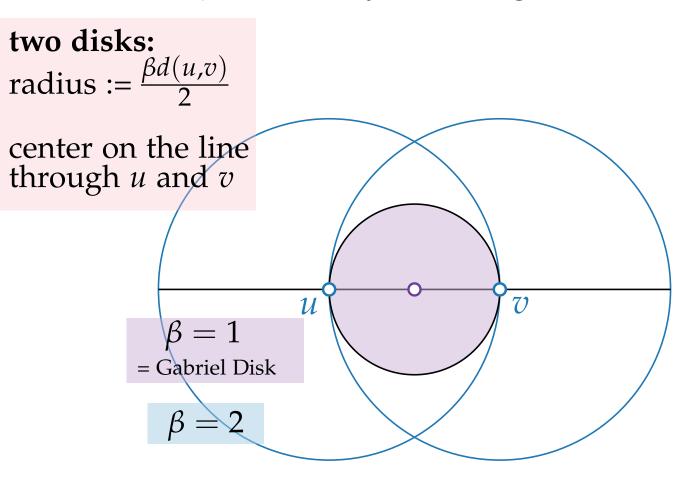
 β -Proximity Drawings: two disks: radius := $\frac{\beta d(u,v)}{2}$ center on the line through u and v \mathcal{U} \mathcal{U} $\beta = 1$ = Gabriel Disk $\beta = 2$

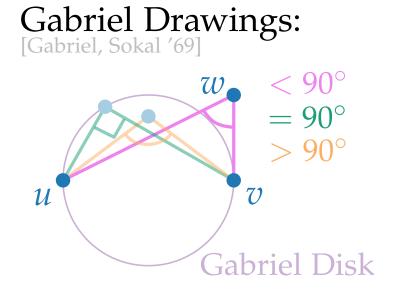




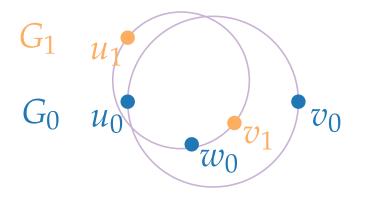
Mutual Witness Gabriel Drawings:

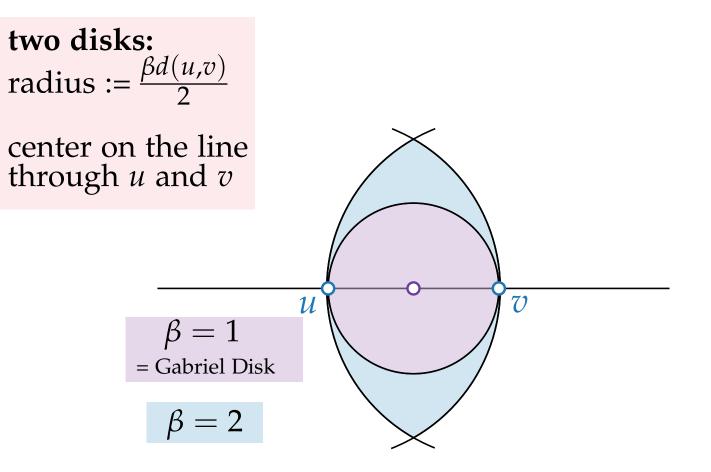


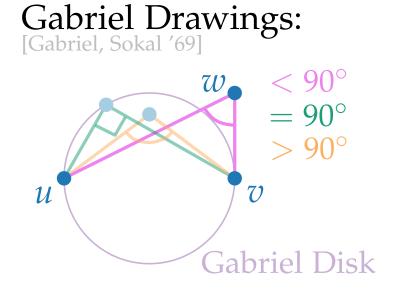




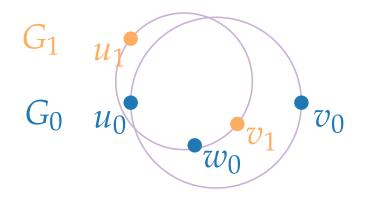
Mutual Witness Gabriel Drawings:

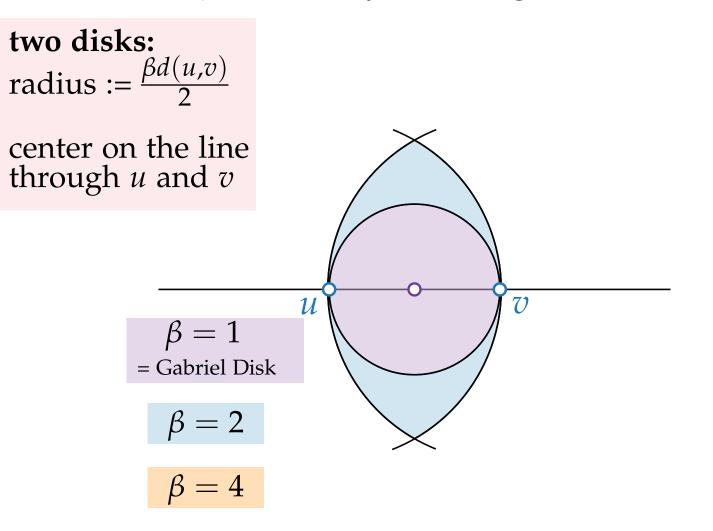


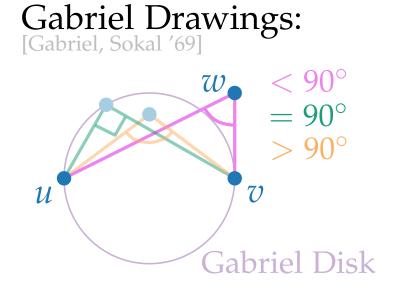




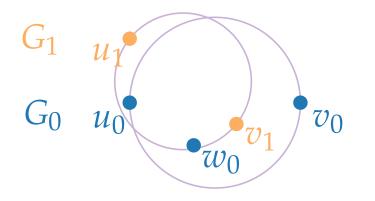
Mutual Witness Gabriel Drawings:

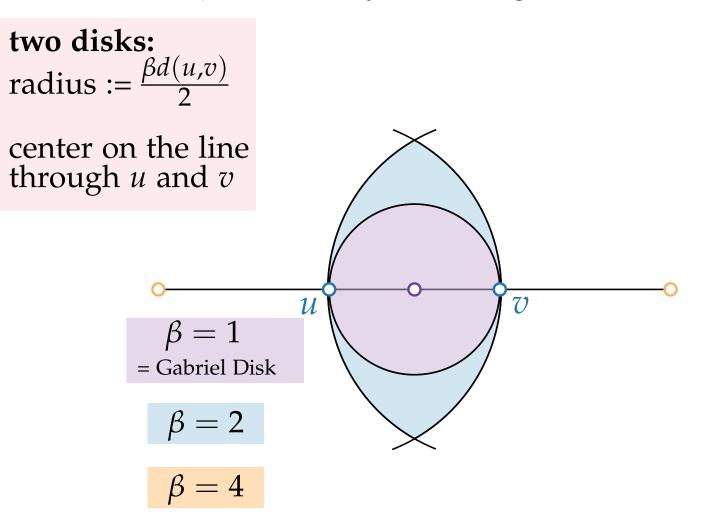


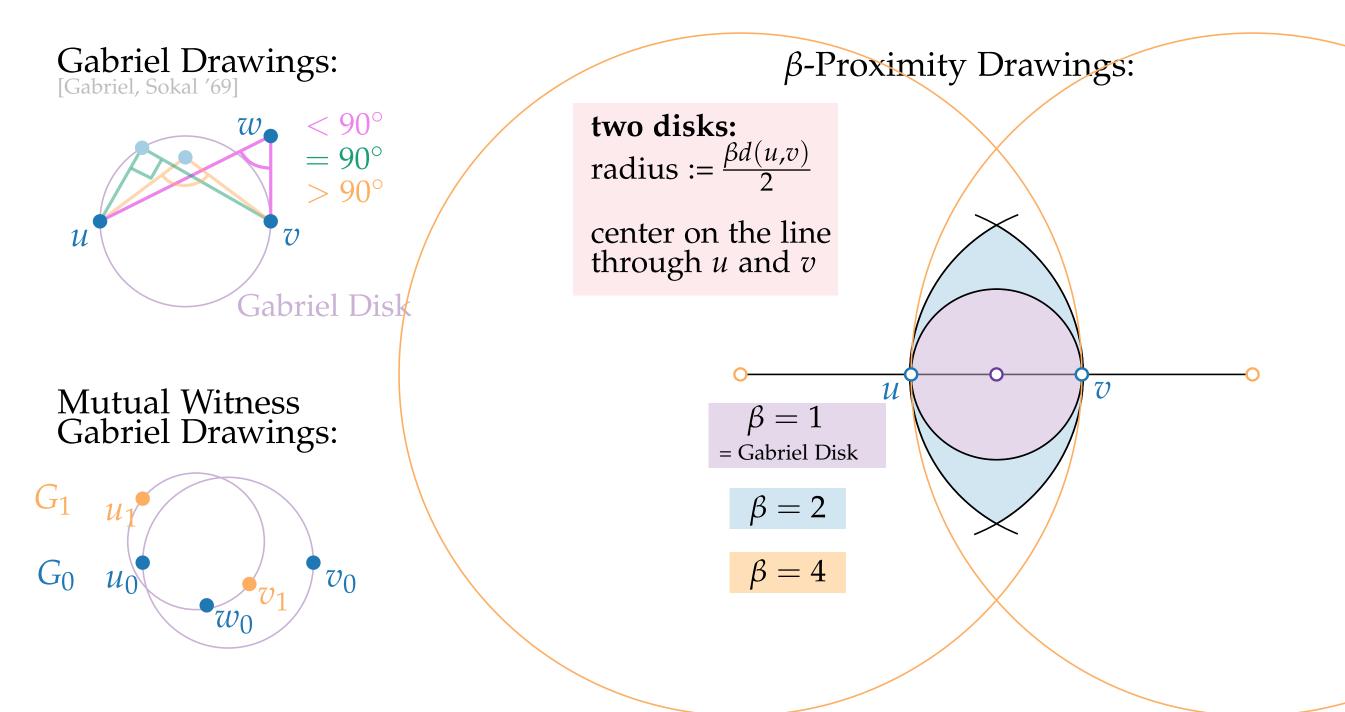


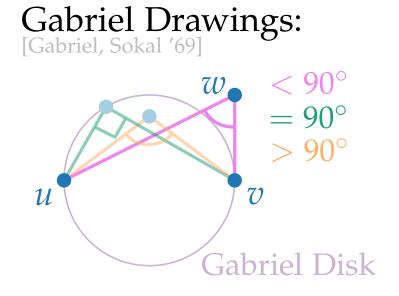


Mutual Witness Gabriel Drawings:

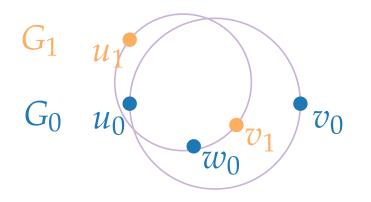


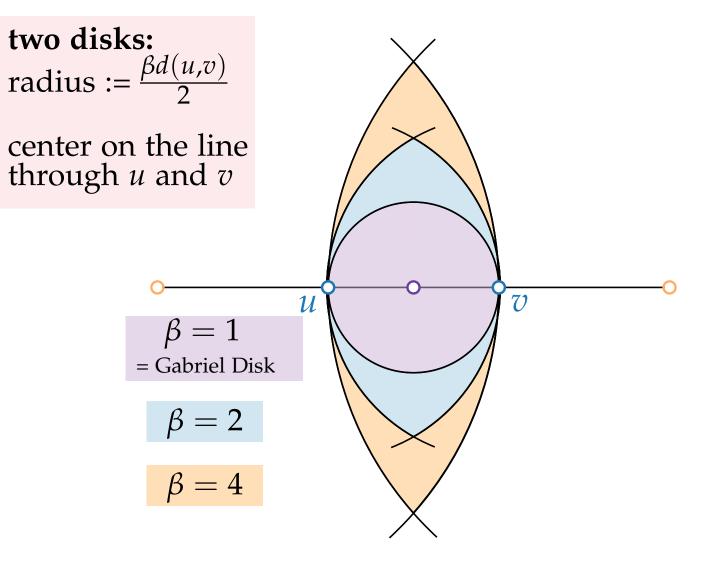


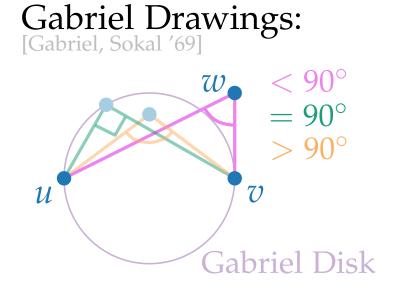




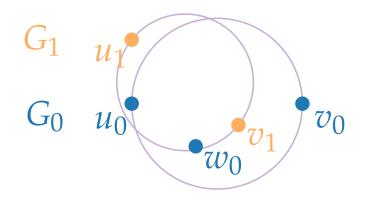
Mutual Witness Gabriel Drawings:

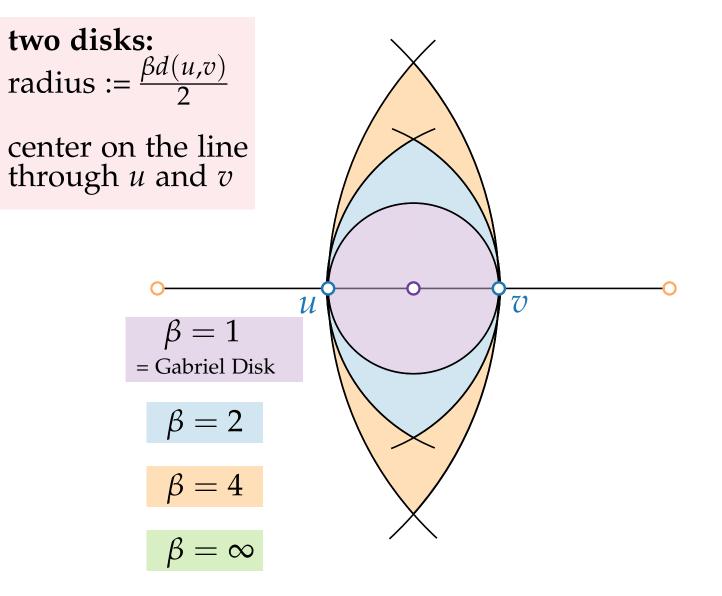


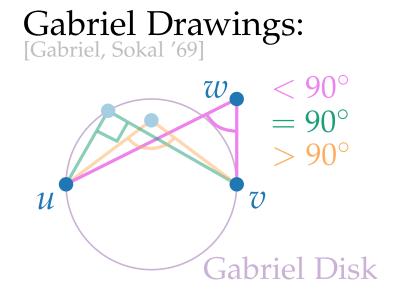




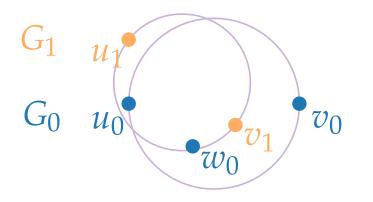
Mutual Witness Gabriel Drawings:

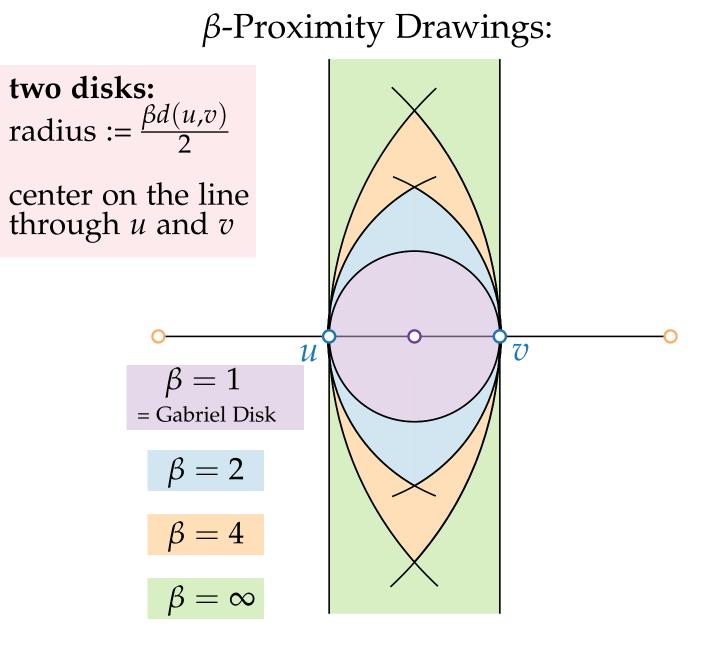


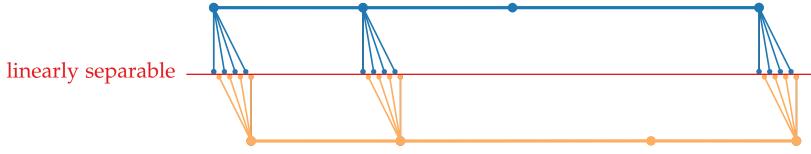


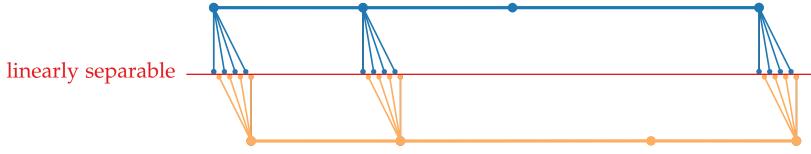


Mutual Witness Gabriel Drawings:



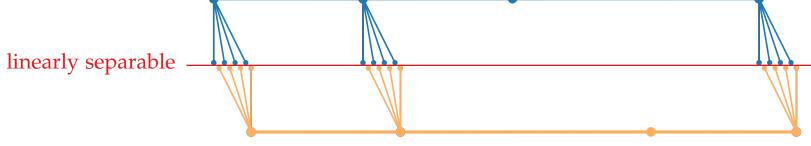






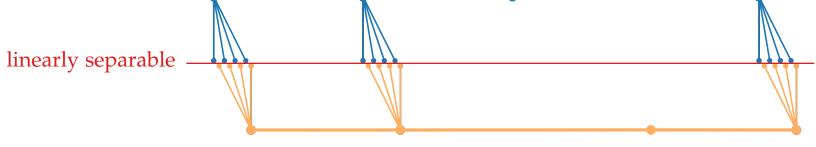
(1) Mutual Witness Gabriel (MWG) Drawings of isomorphic caterpillars

 $\beta = 1$



(1) Mutual Witness Gabriel (MWG) Drawings of isomorphic caterpillars

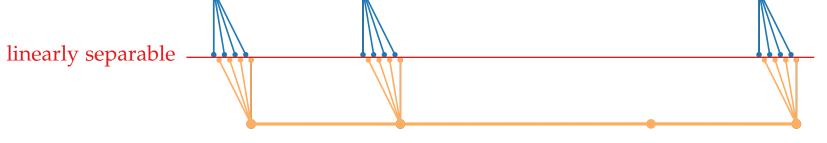
 $\beta = 1$



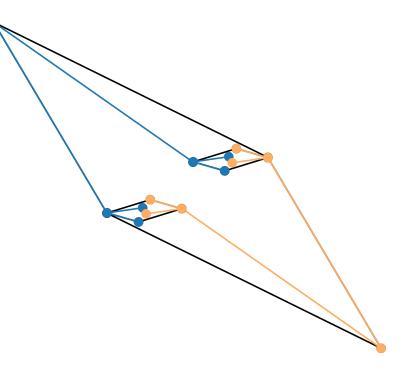
(2) Mutual Witness β Drawings of isomorphic trees

(1) Mutual Witness Gabriel (MWG) Drawings of isomorphic caterpillars

 $\beta = 1$

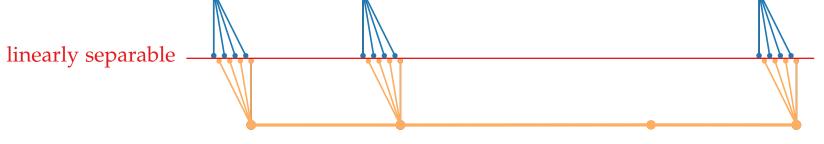


(2) Mutual Witness β Drawings of isomorphic trees

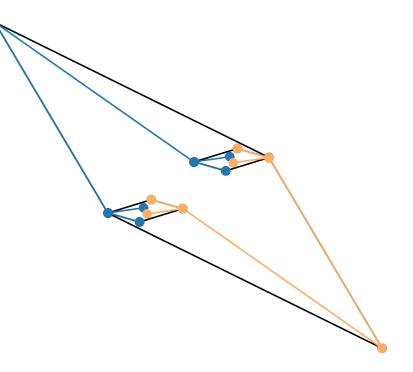


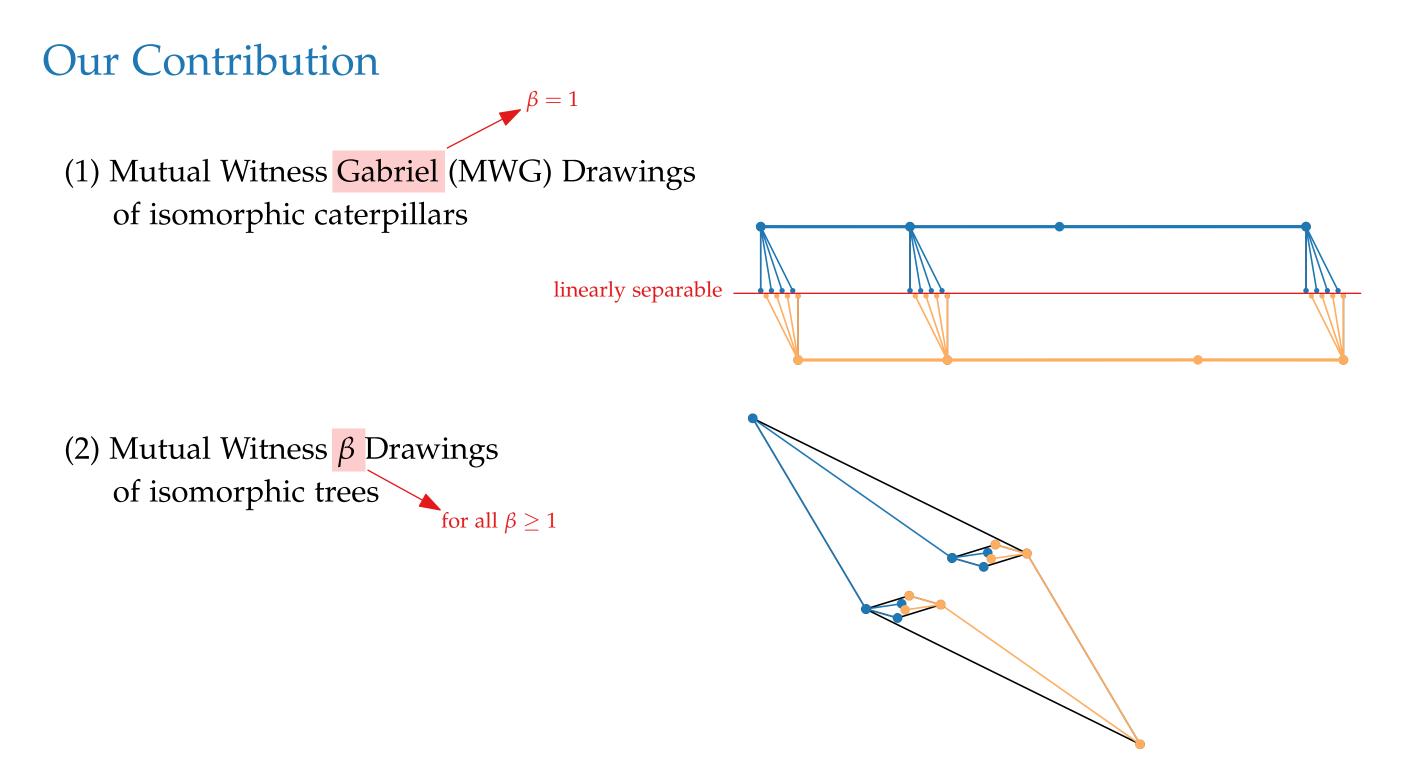
(1) Mutual Witness Gabriel (MWG) Drawings of isomorphic caterpillars

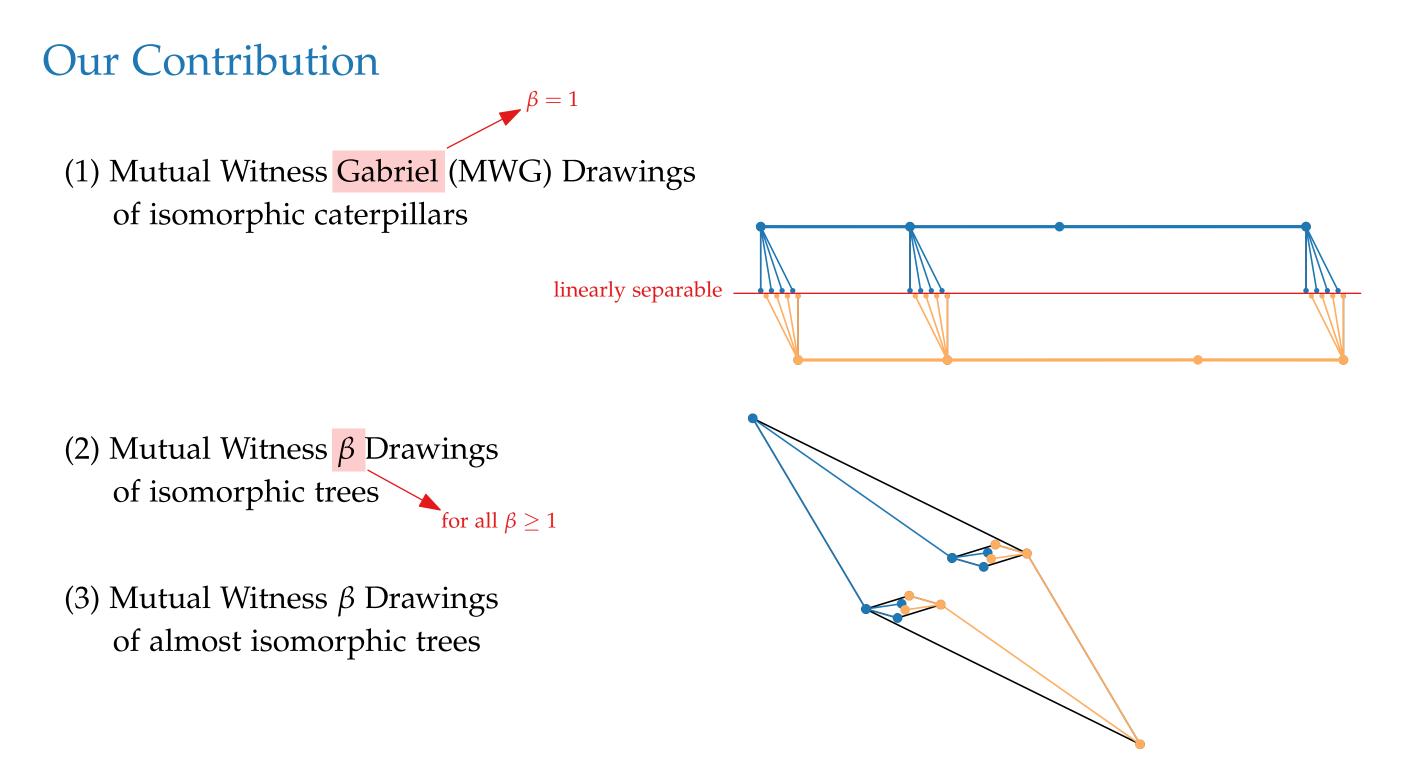
 $\beta = 1$

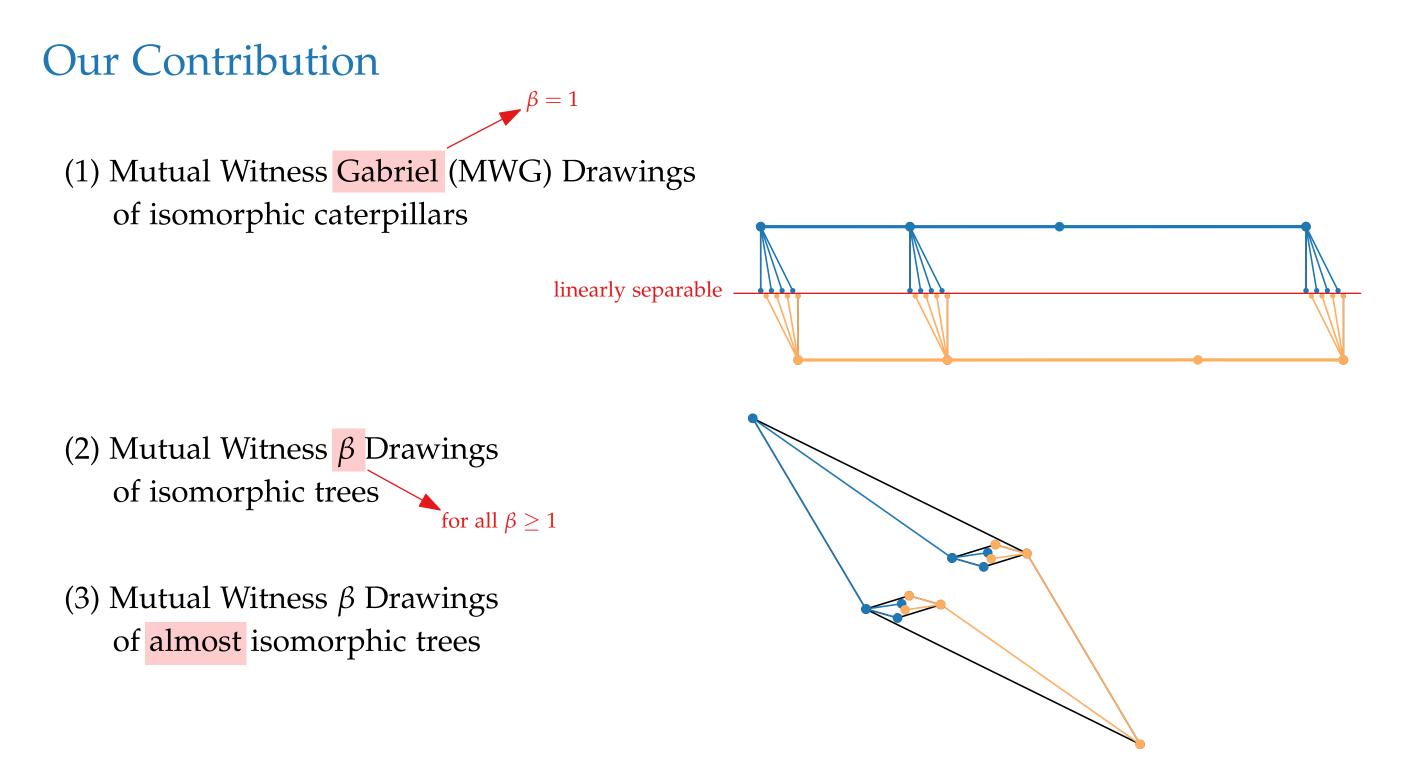


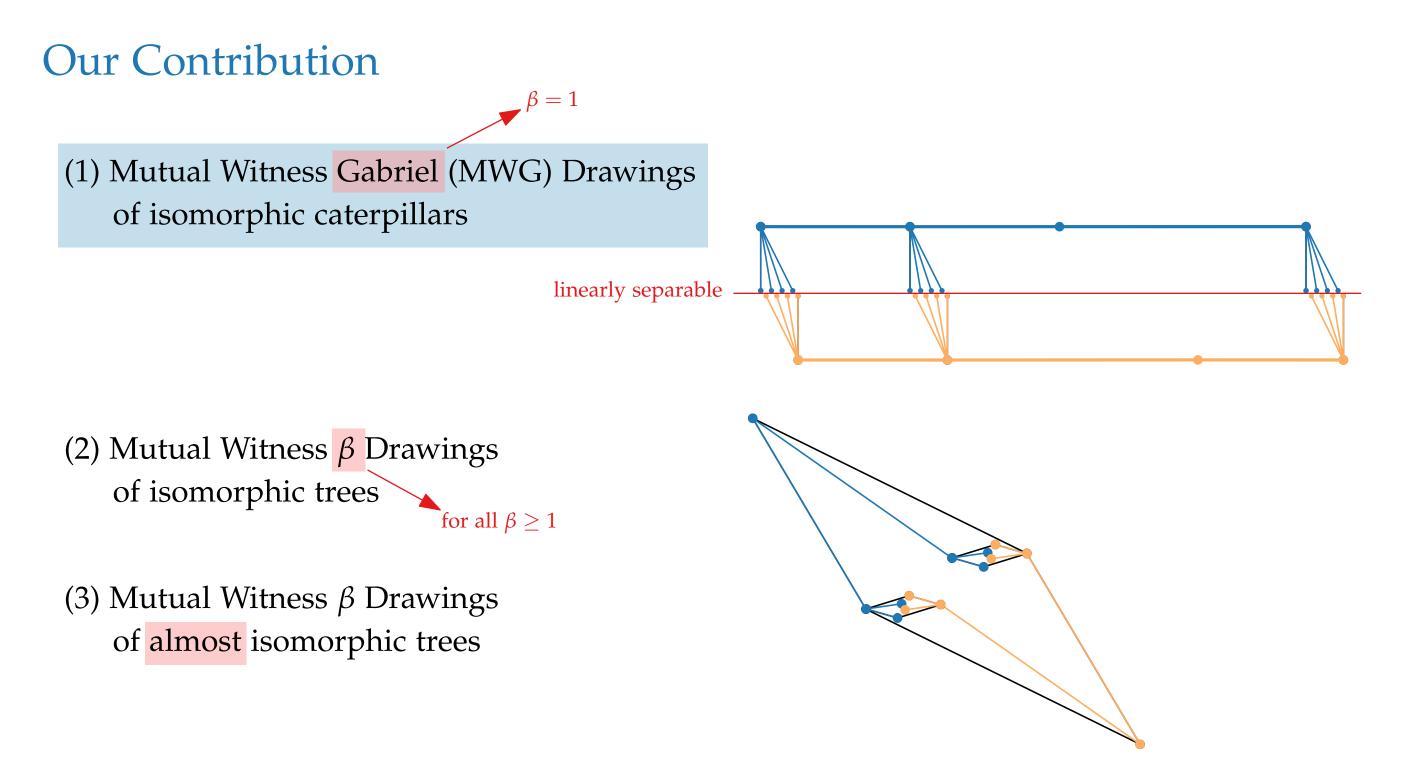
(2) Mutual Witness β Drawings of isomorphic trees

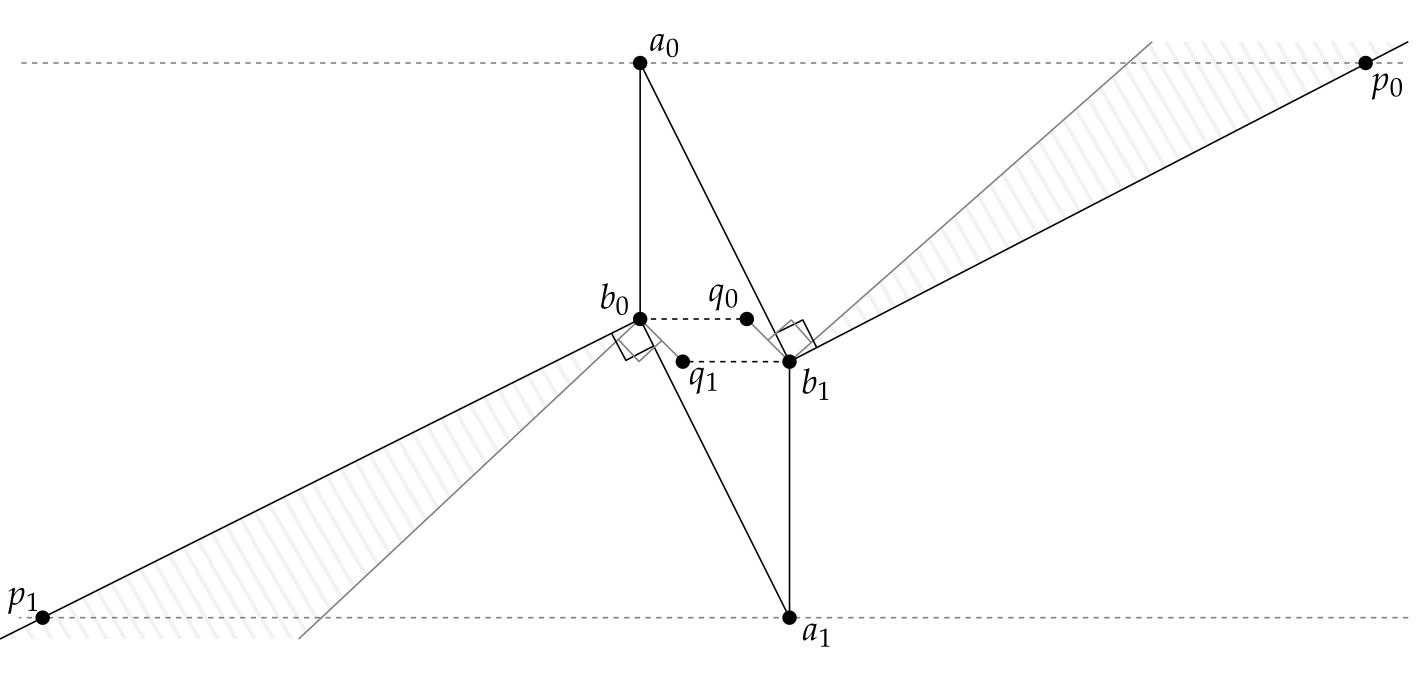


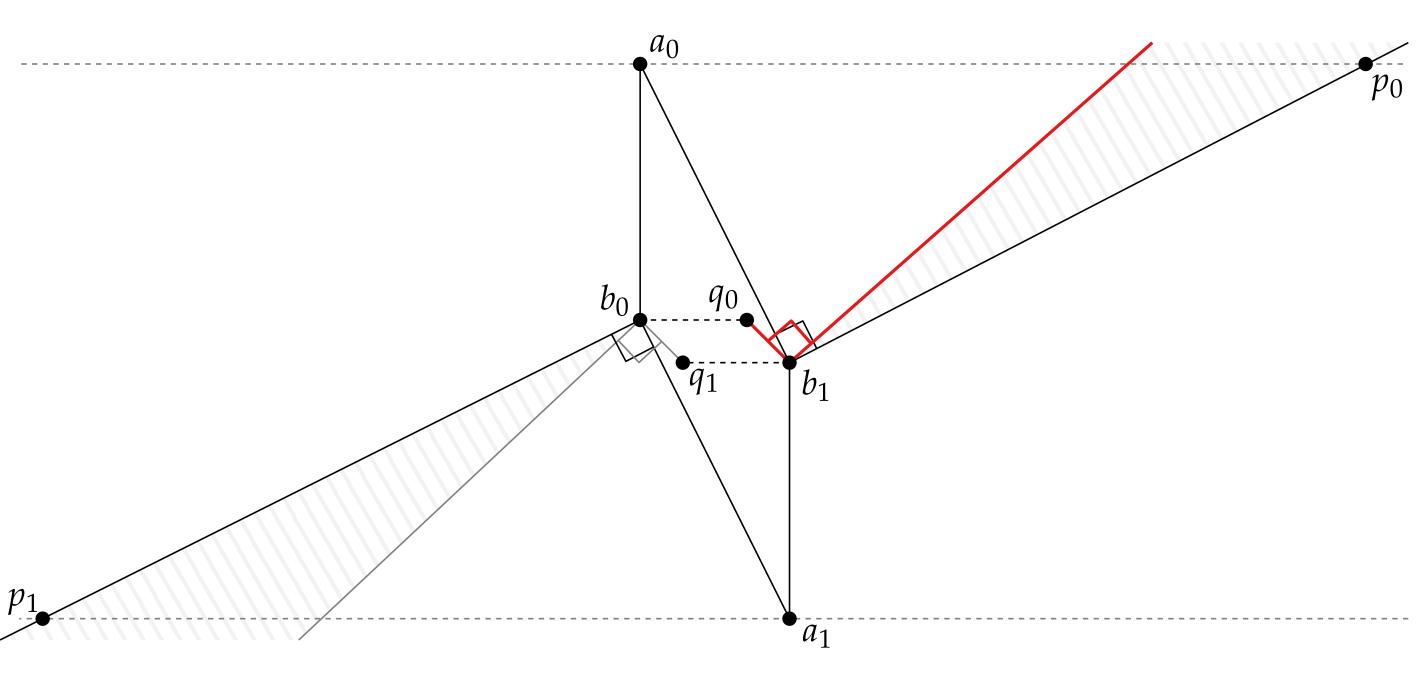


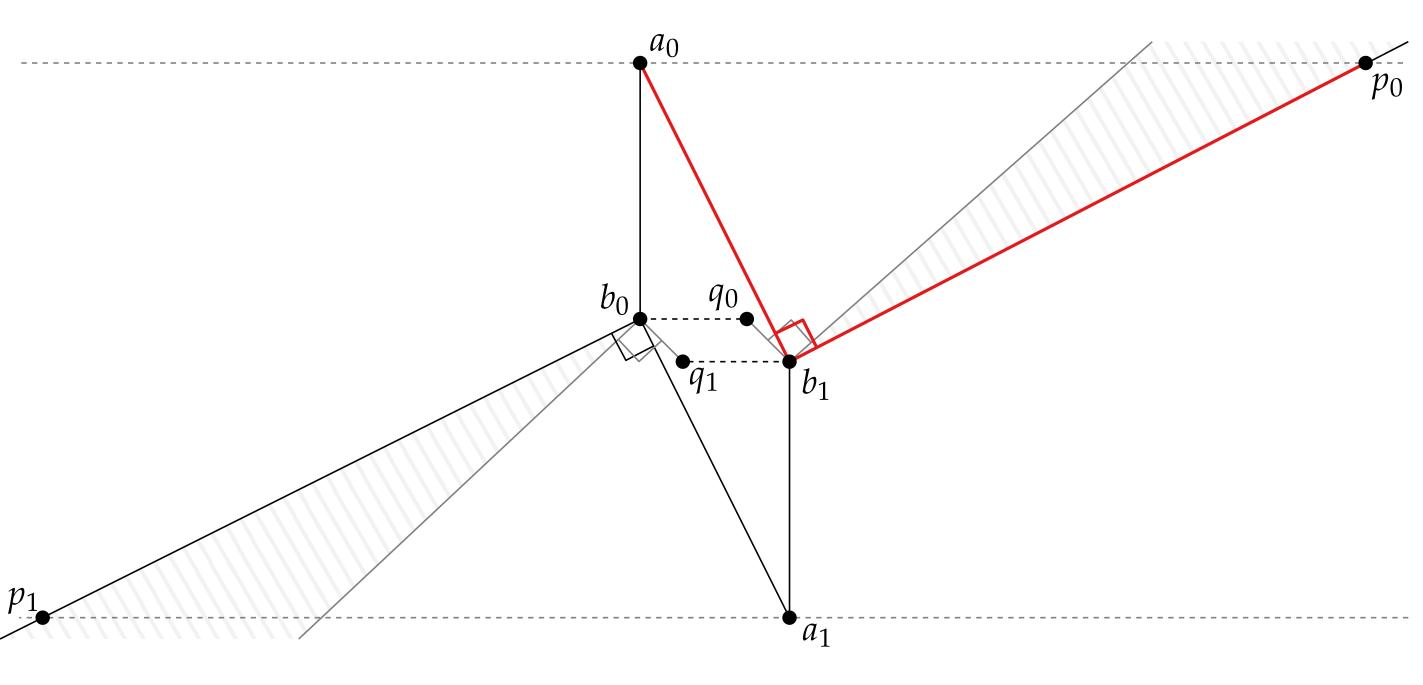


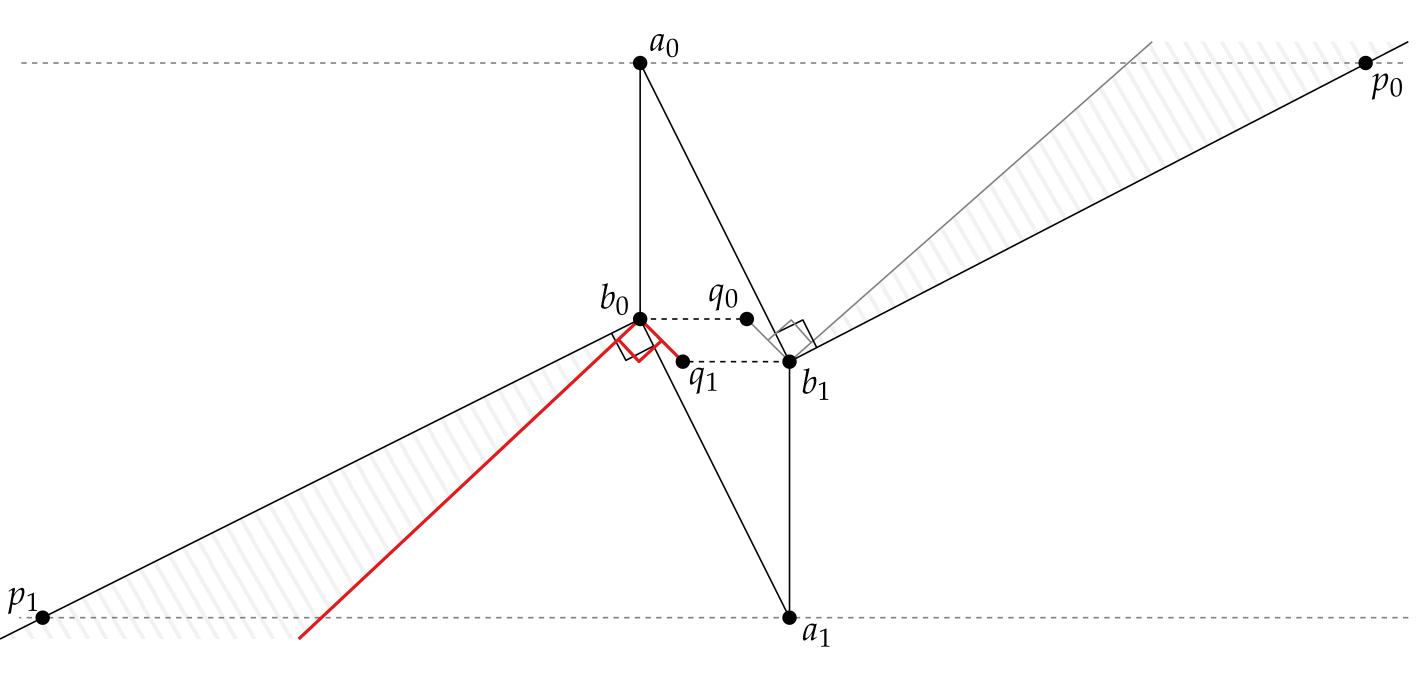


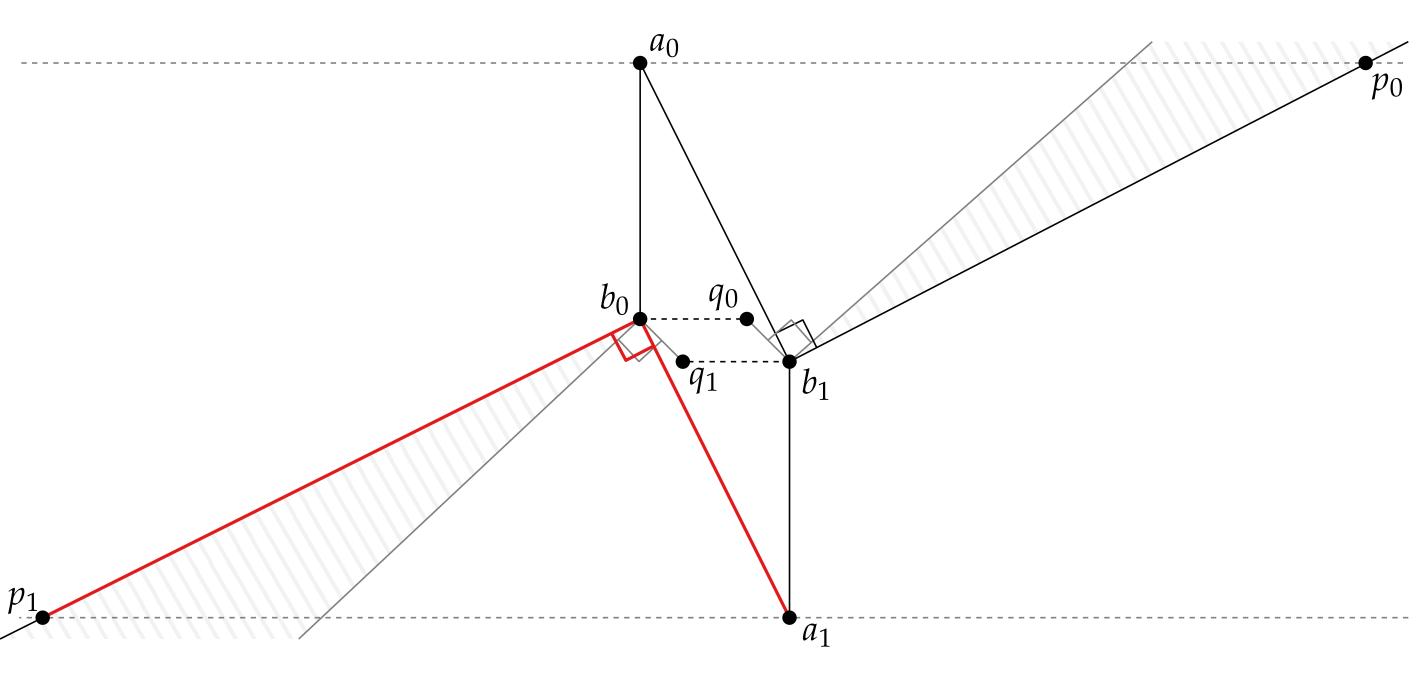


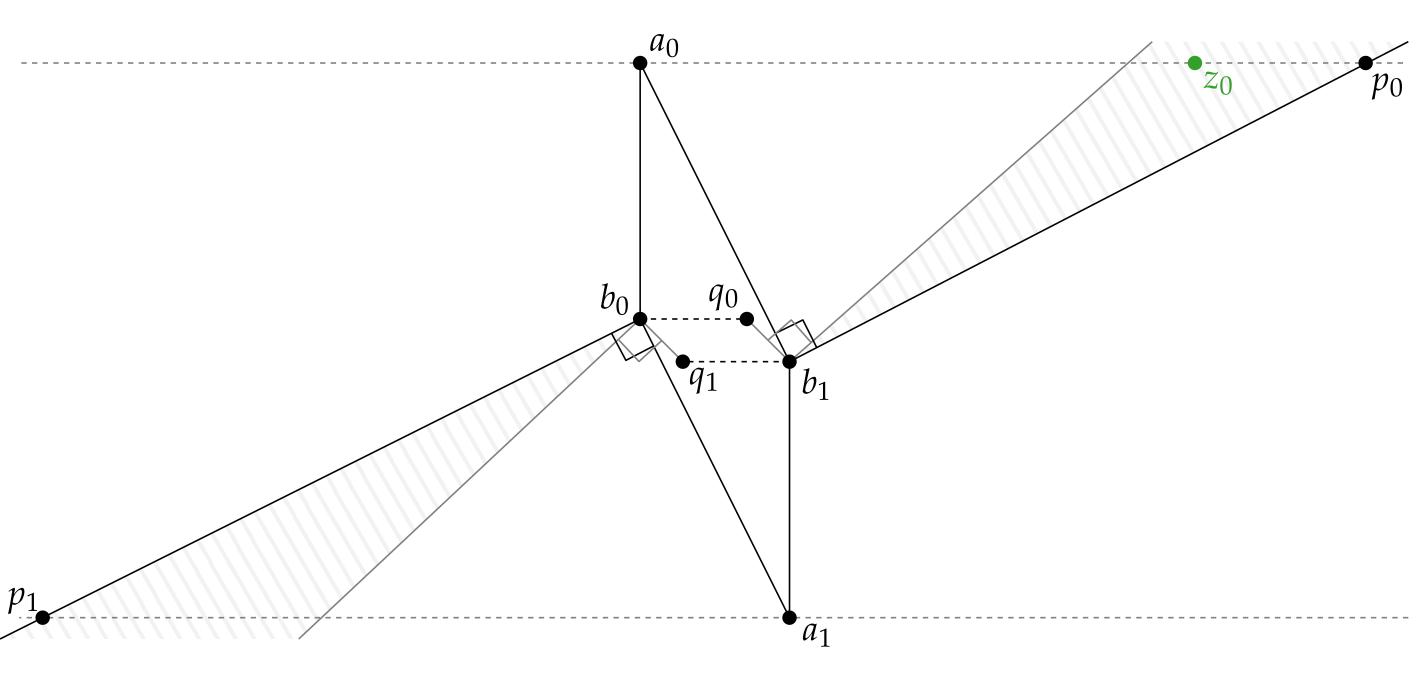


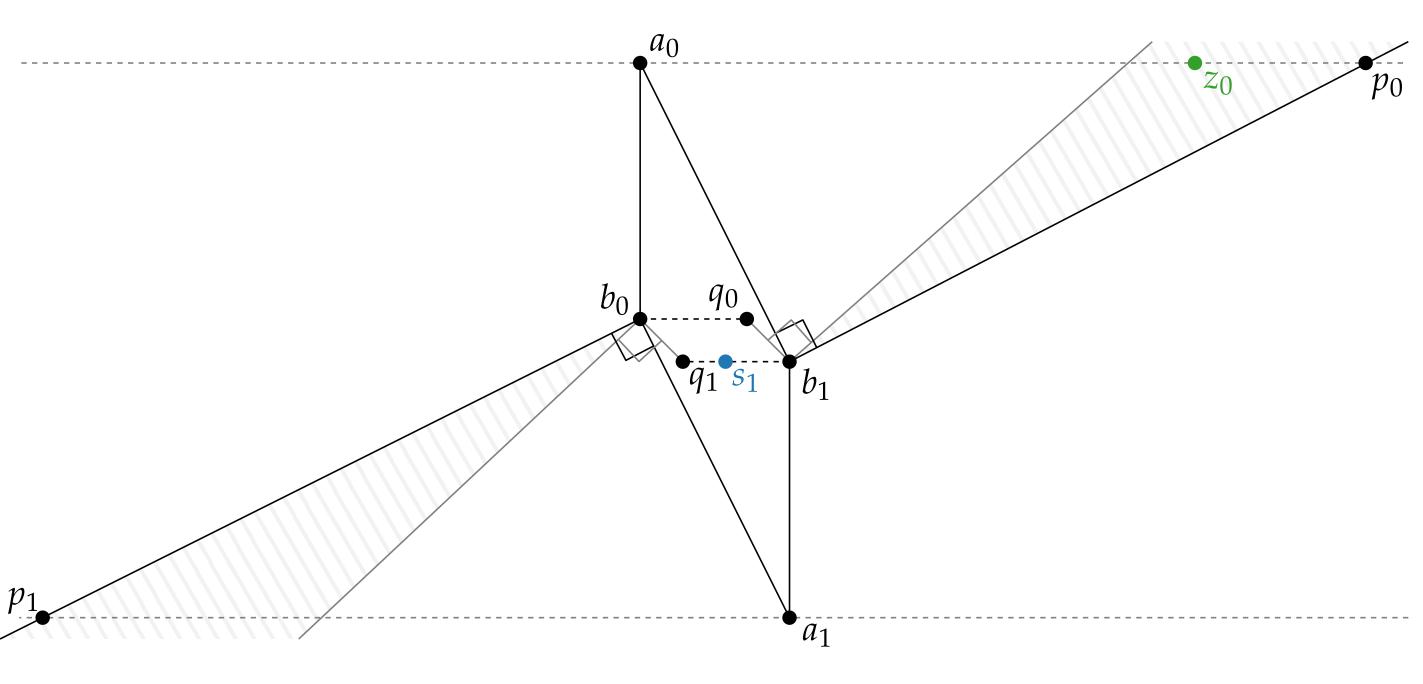


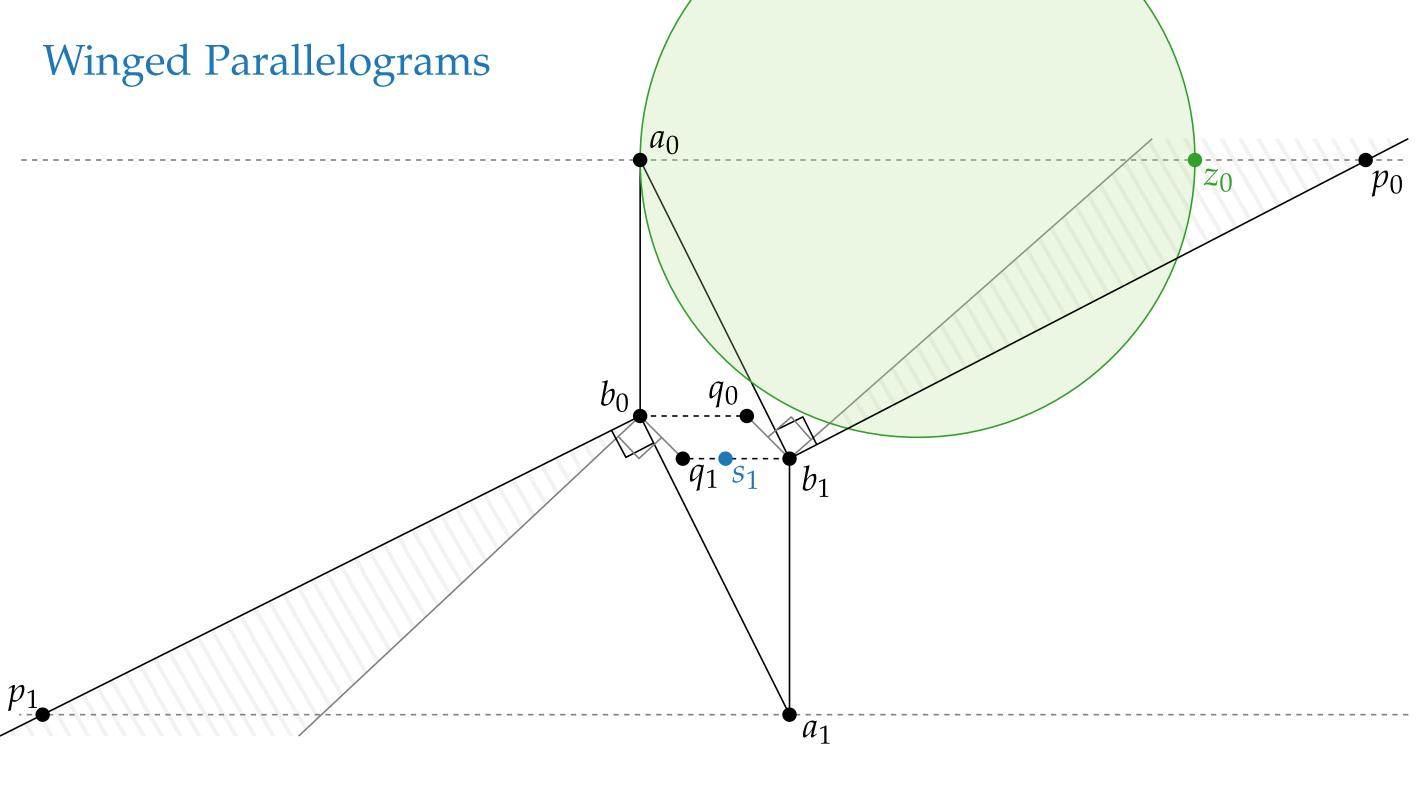


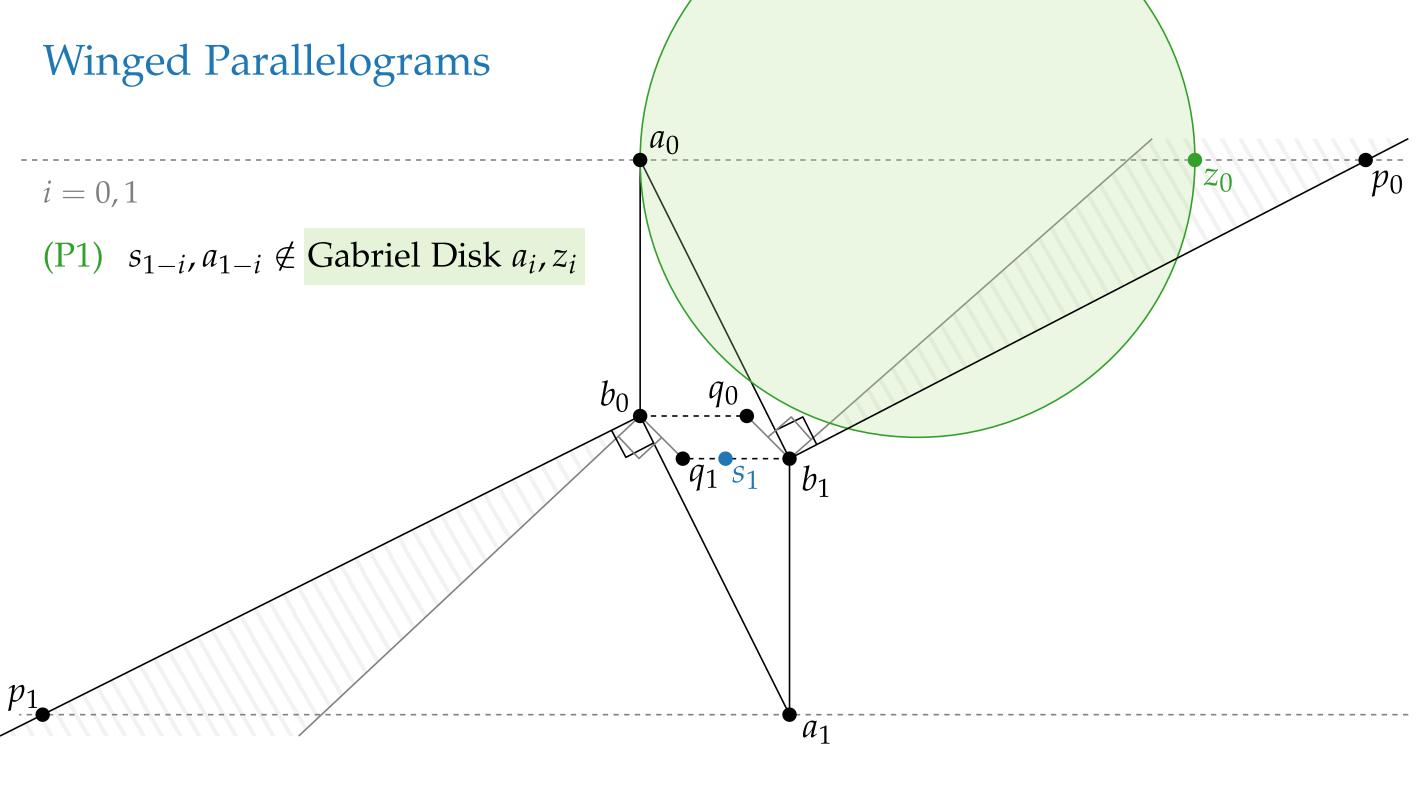


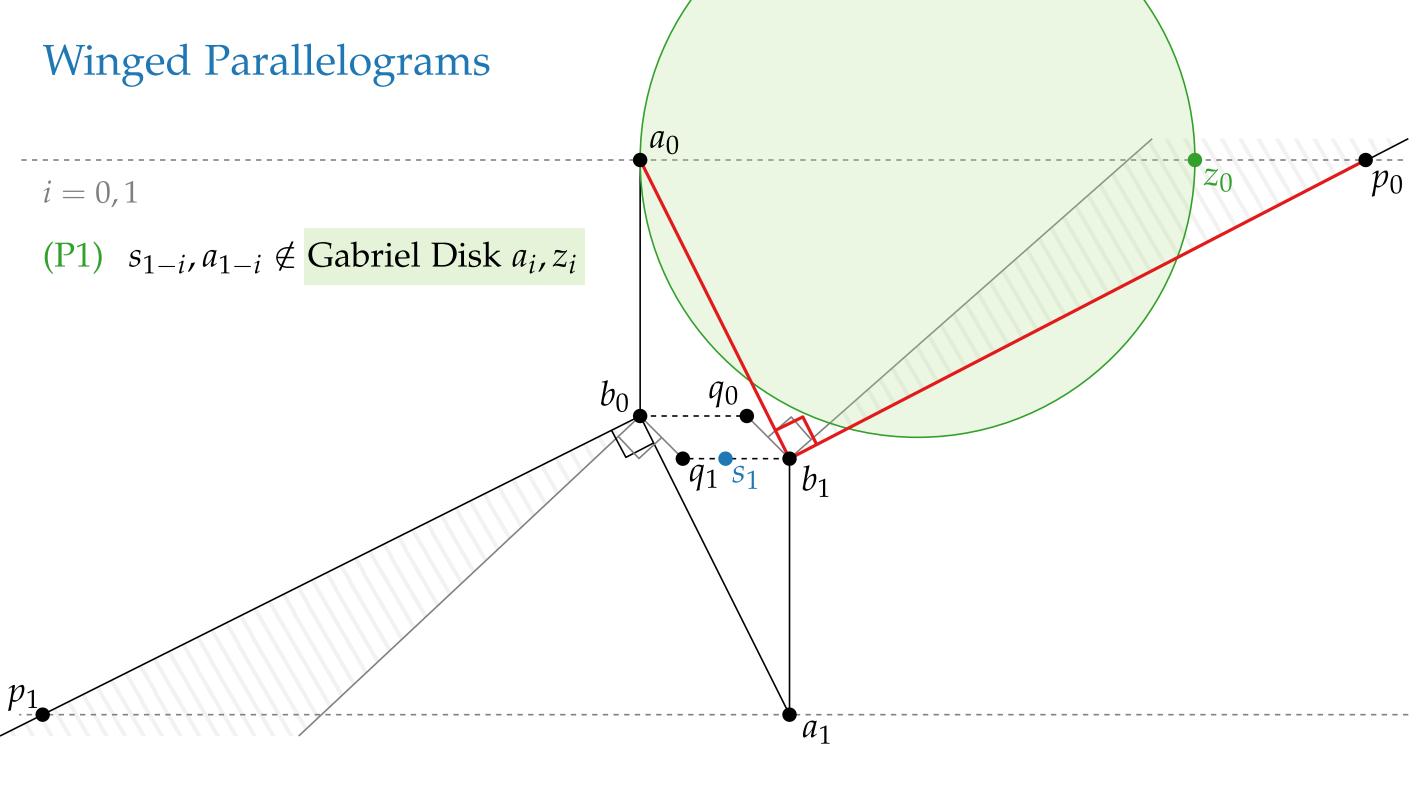


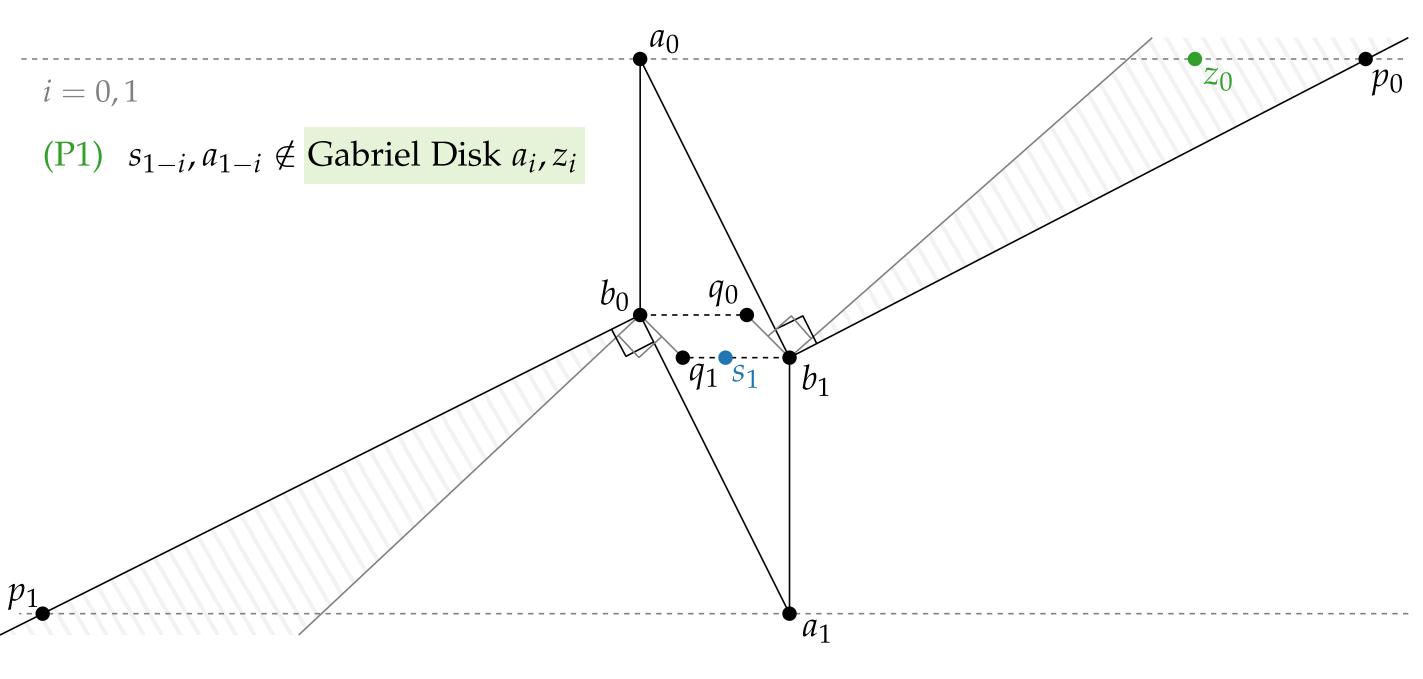


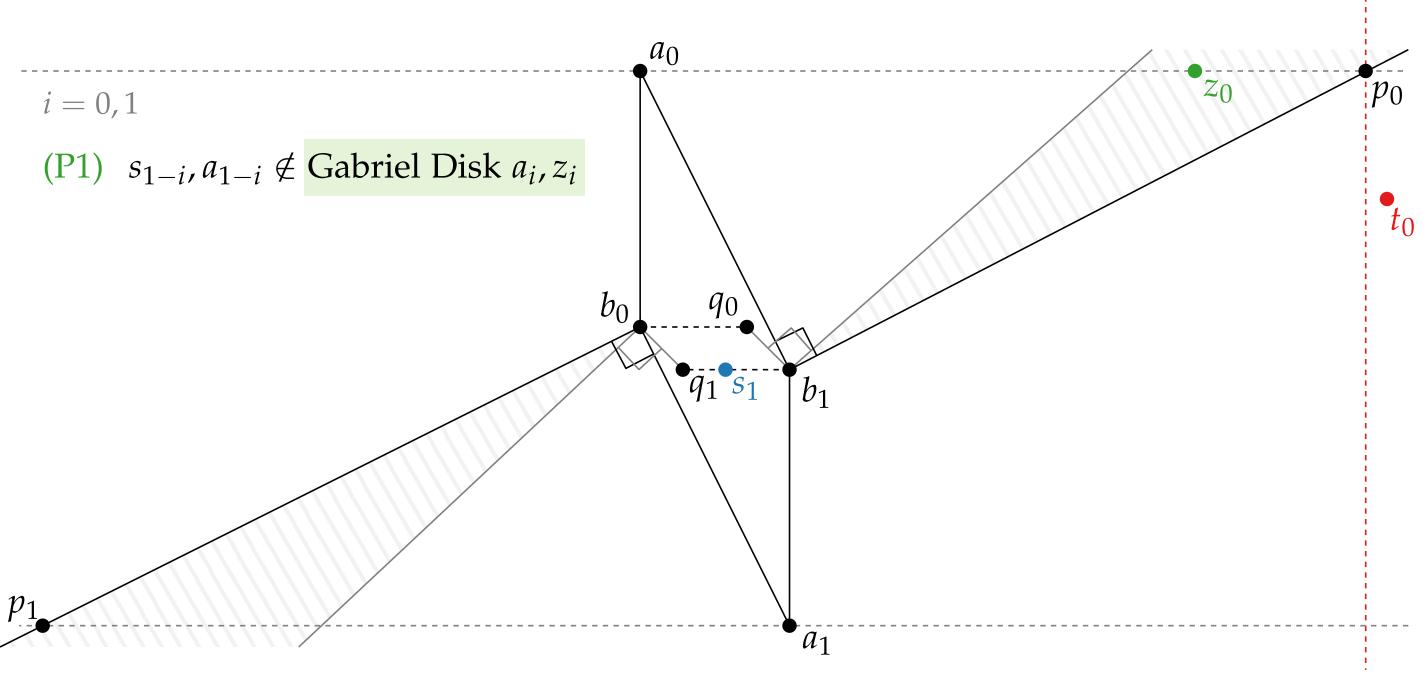


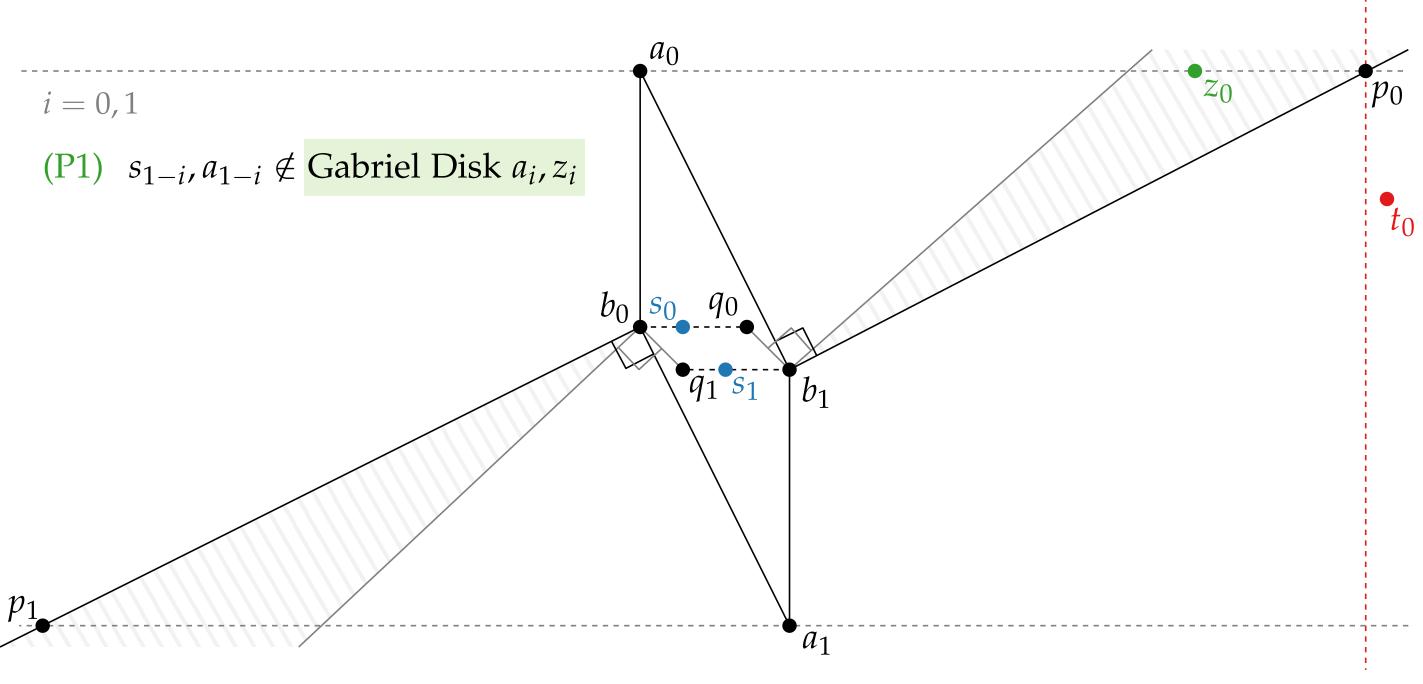


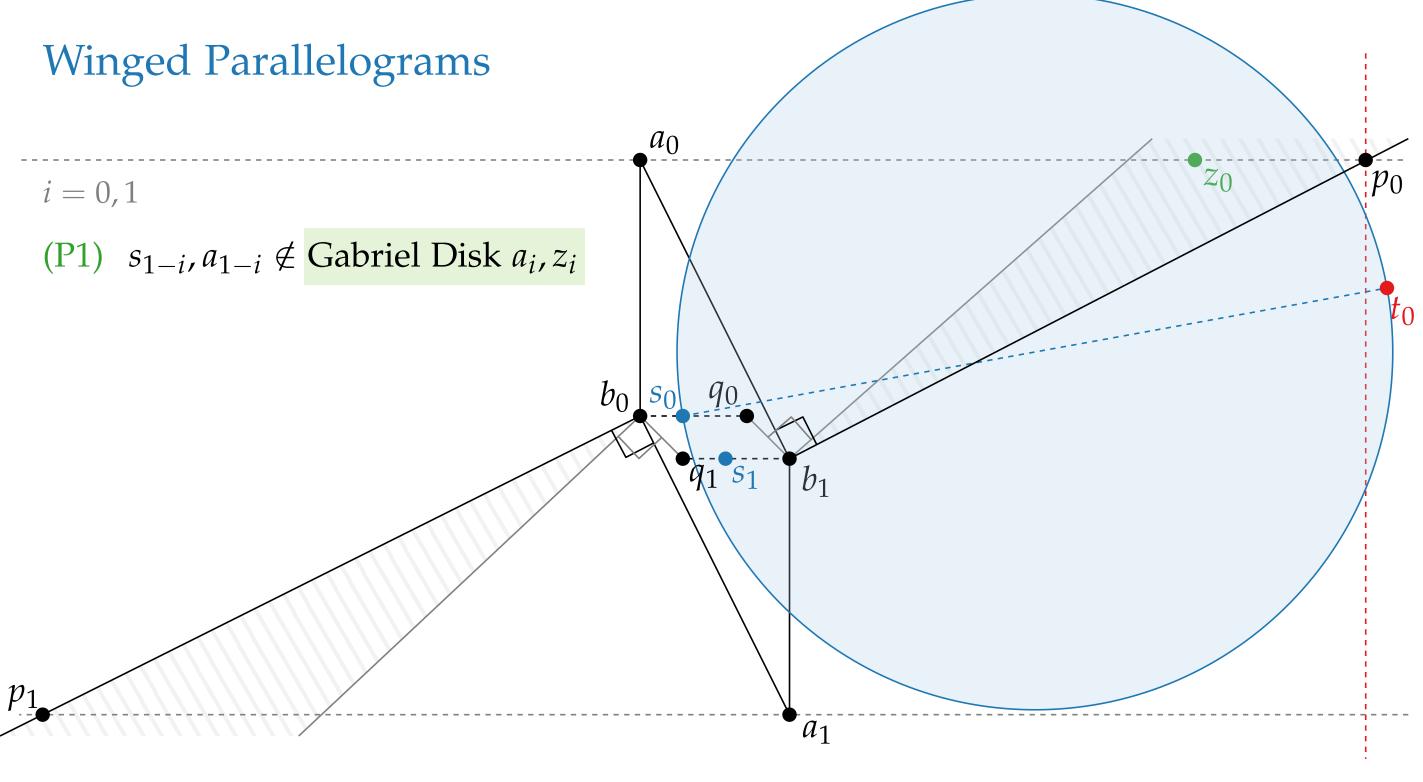


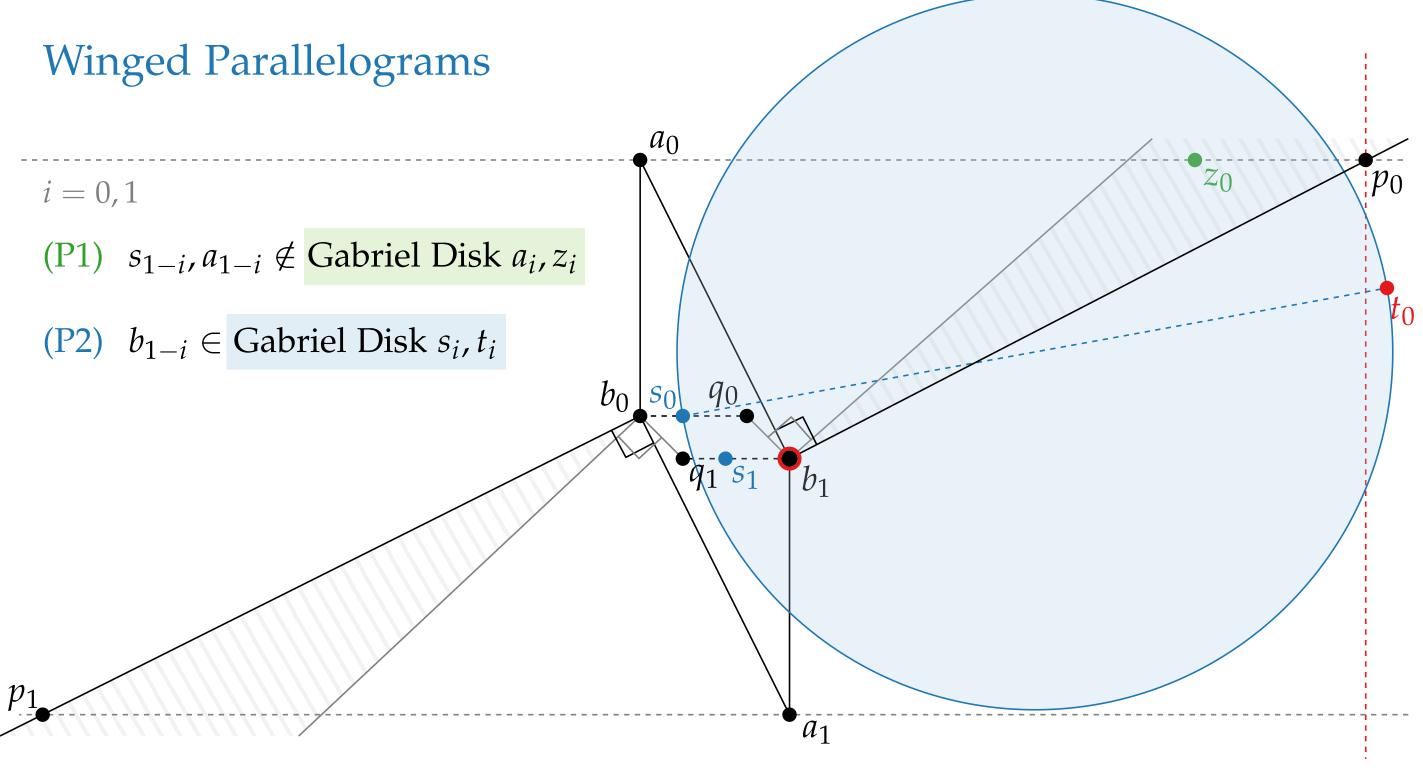


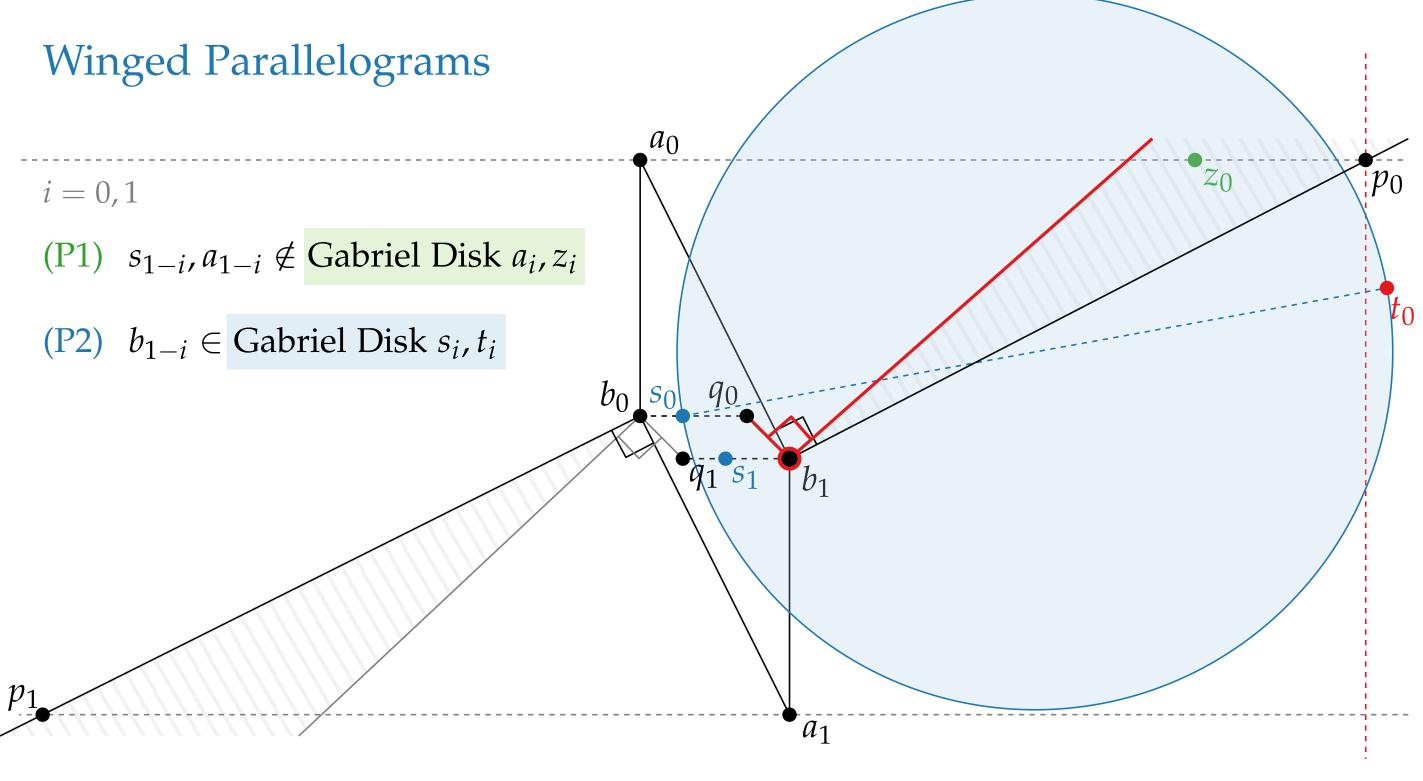


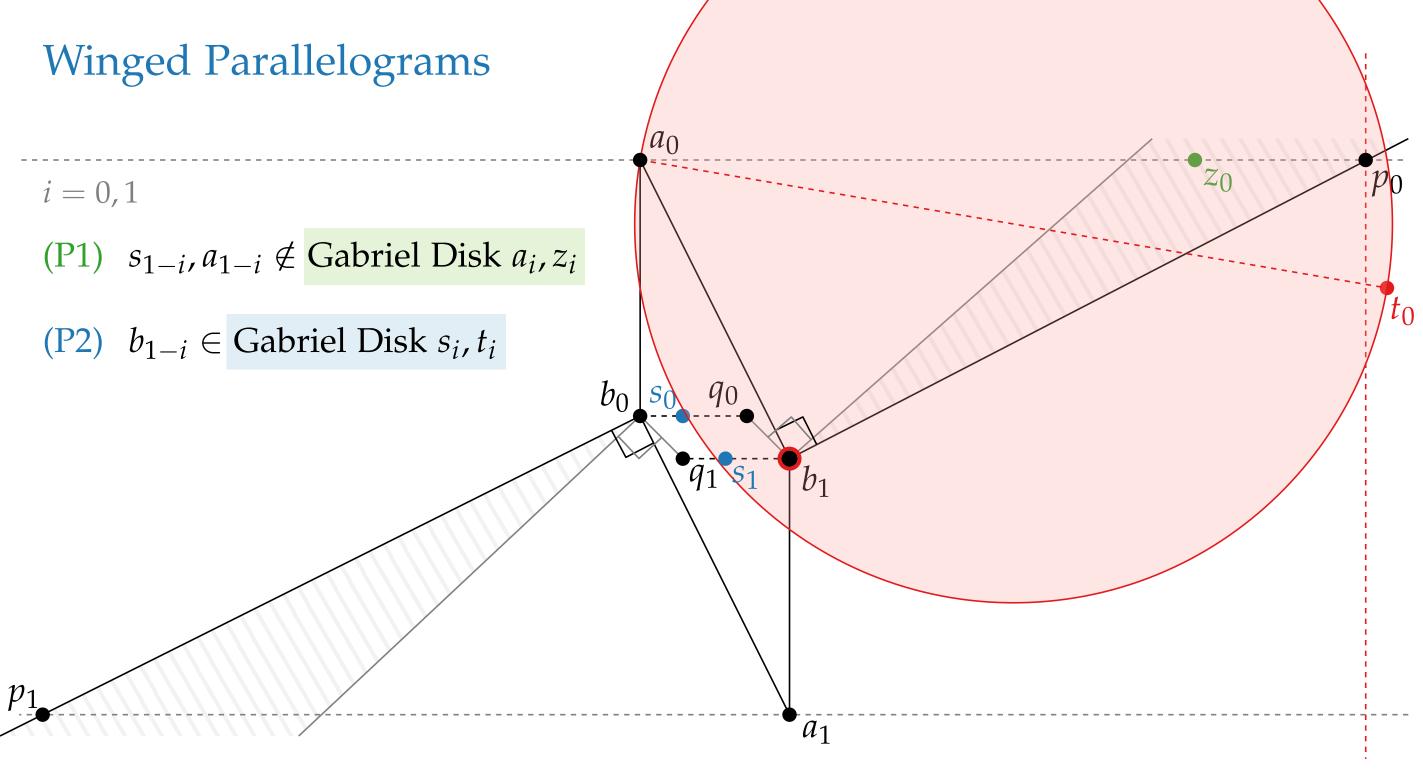


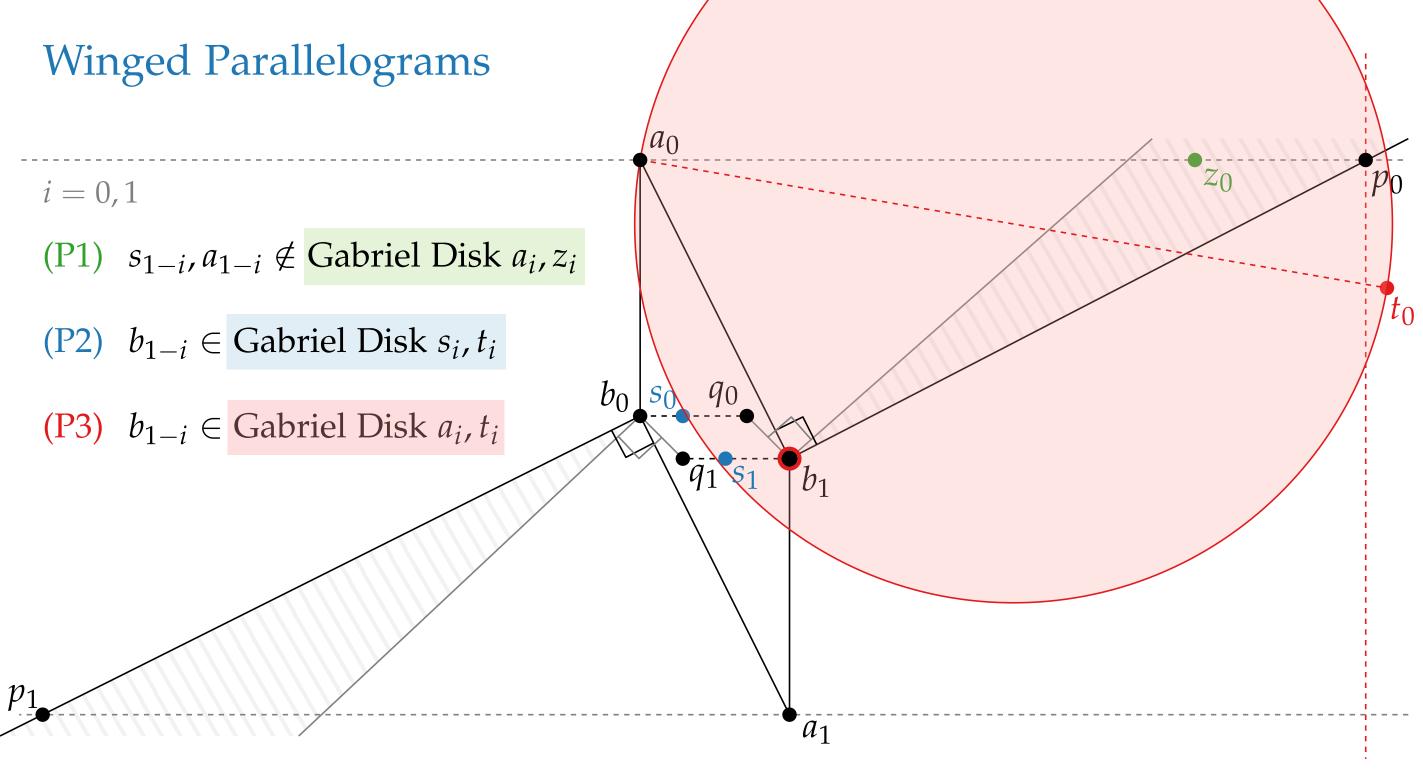


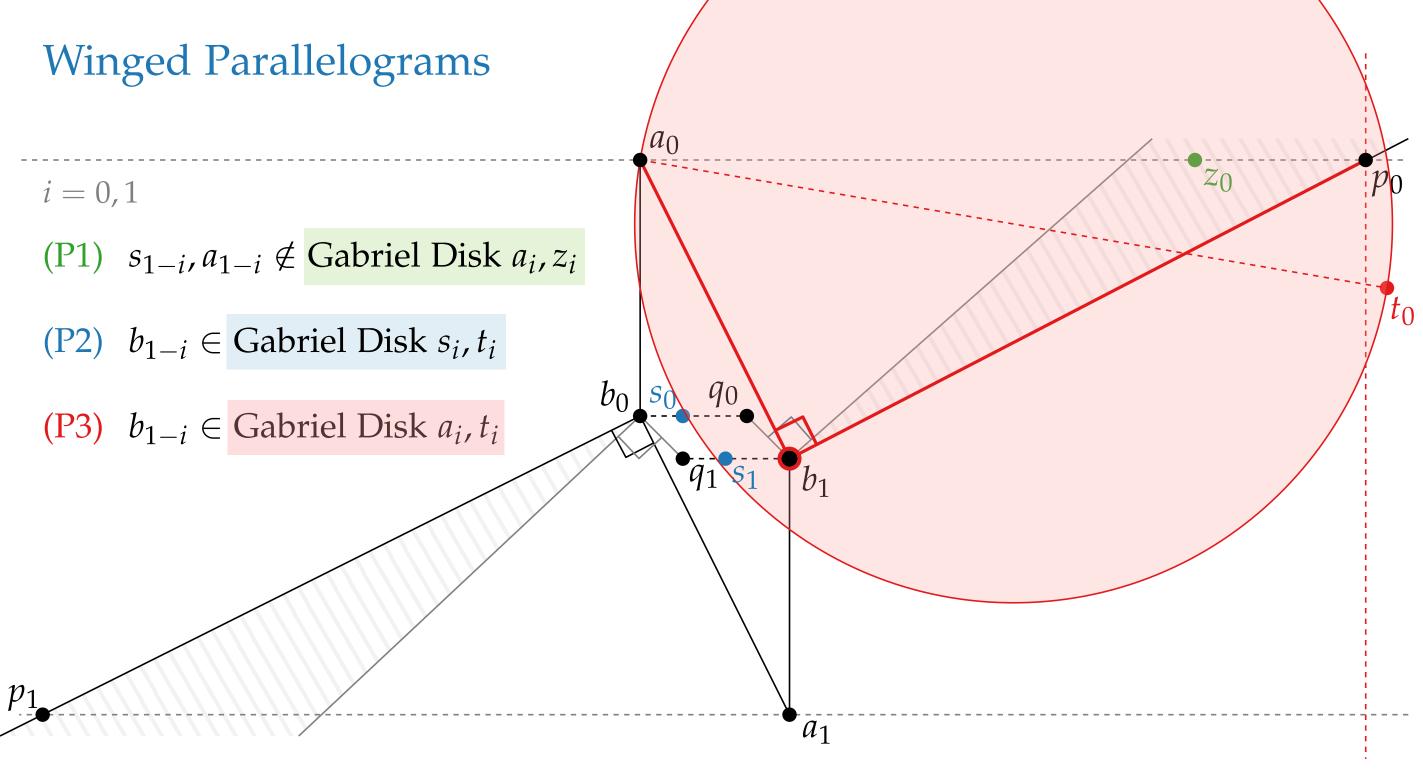


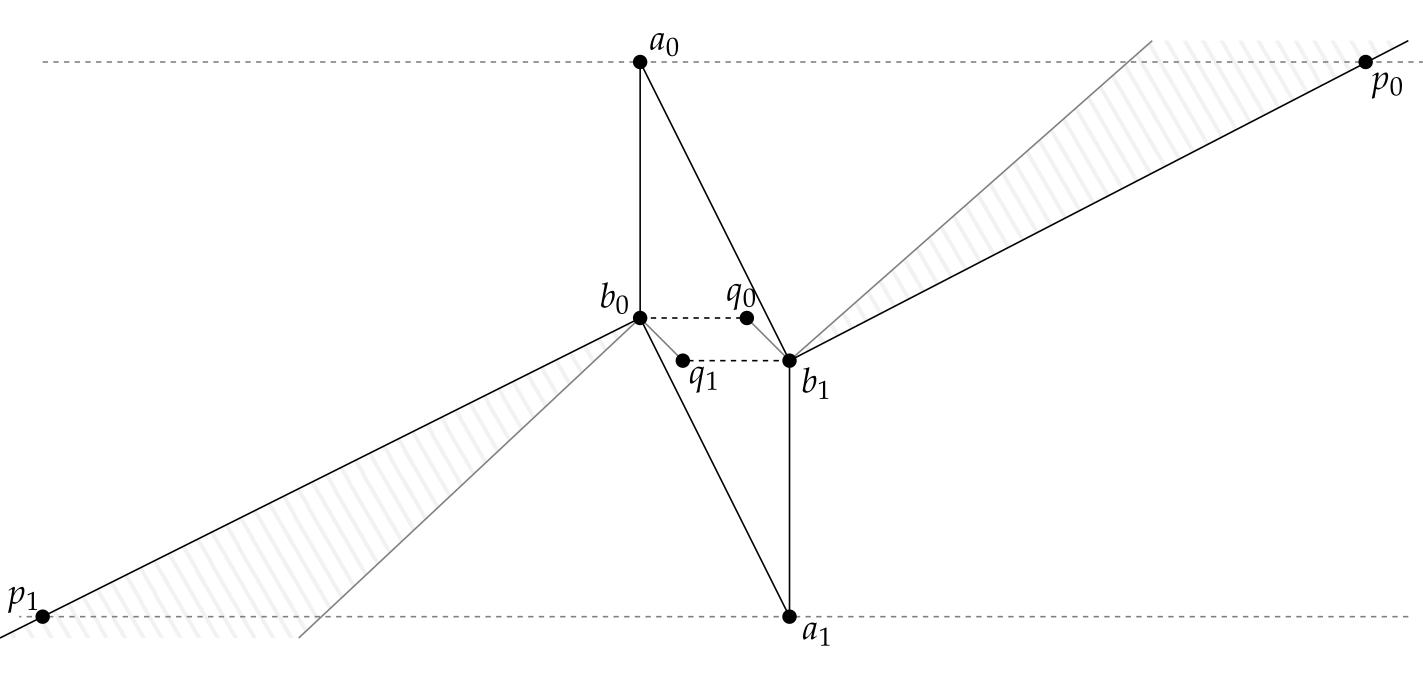


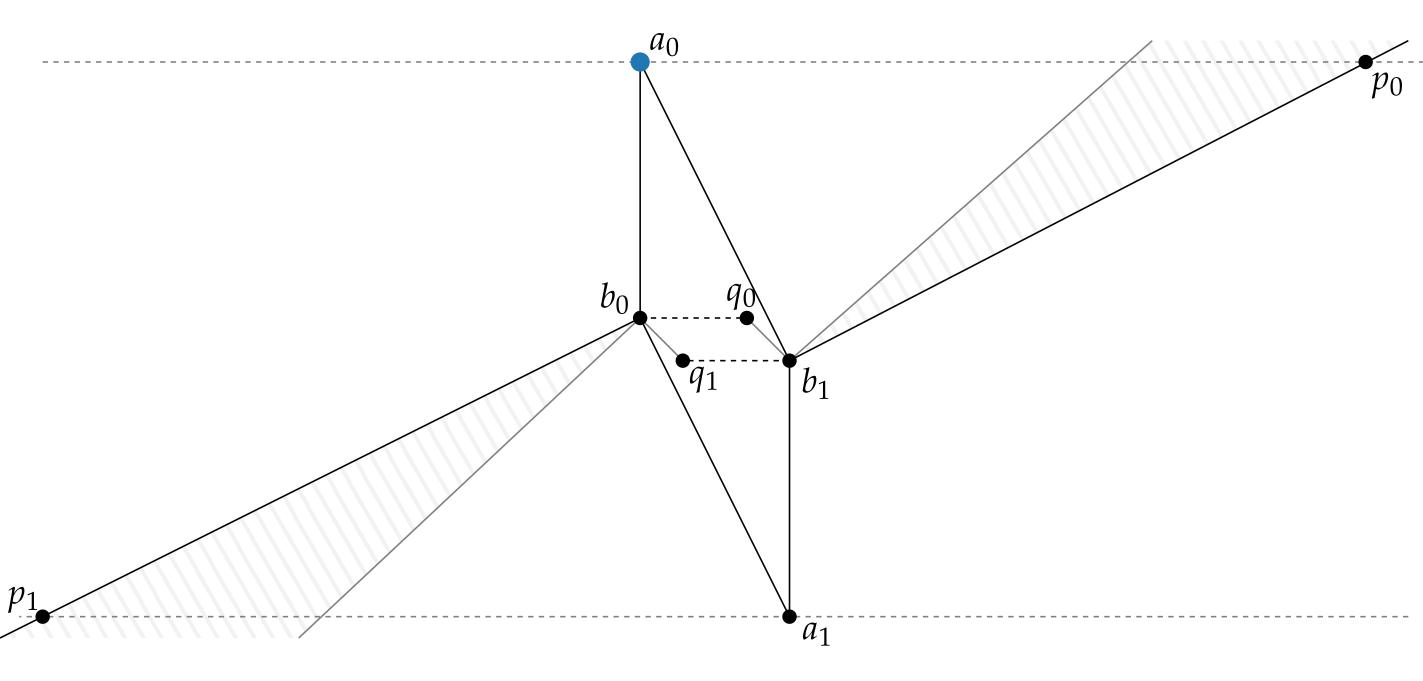


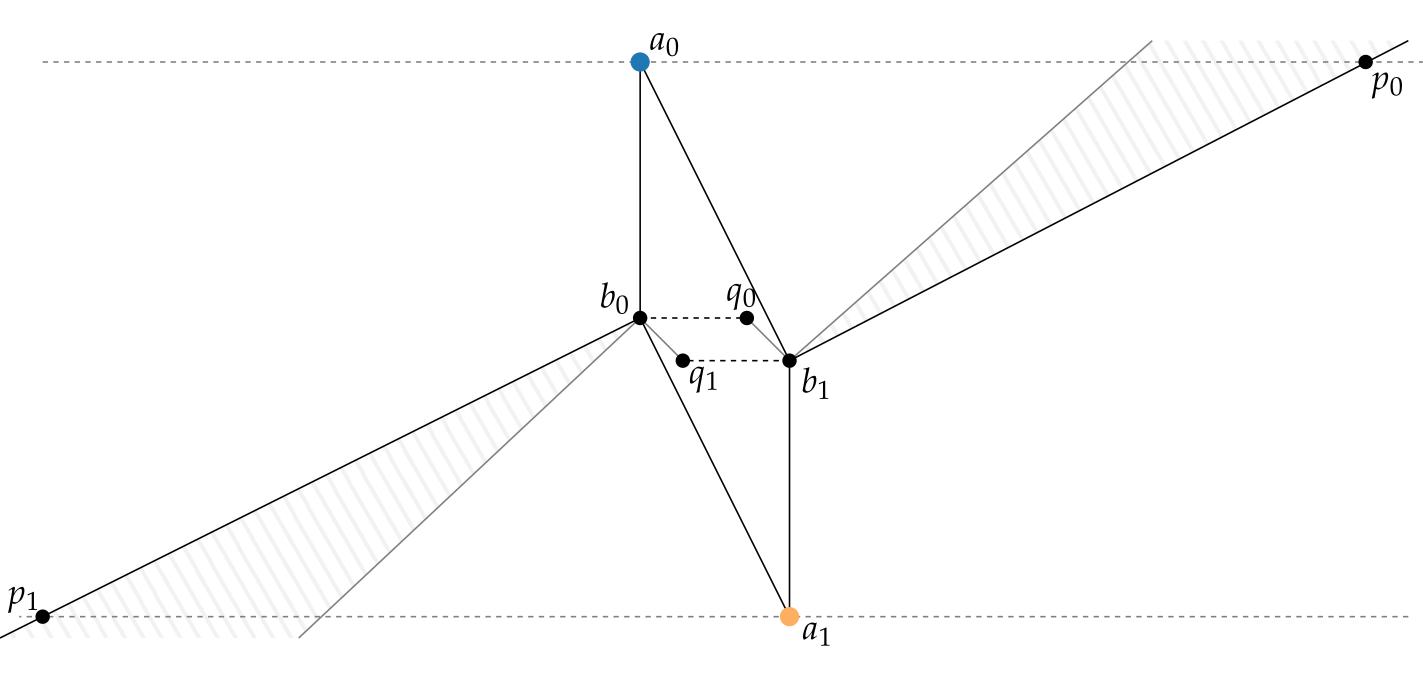


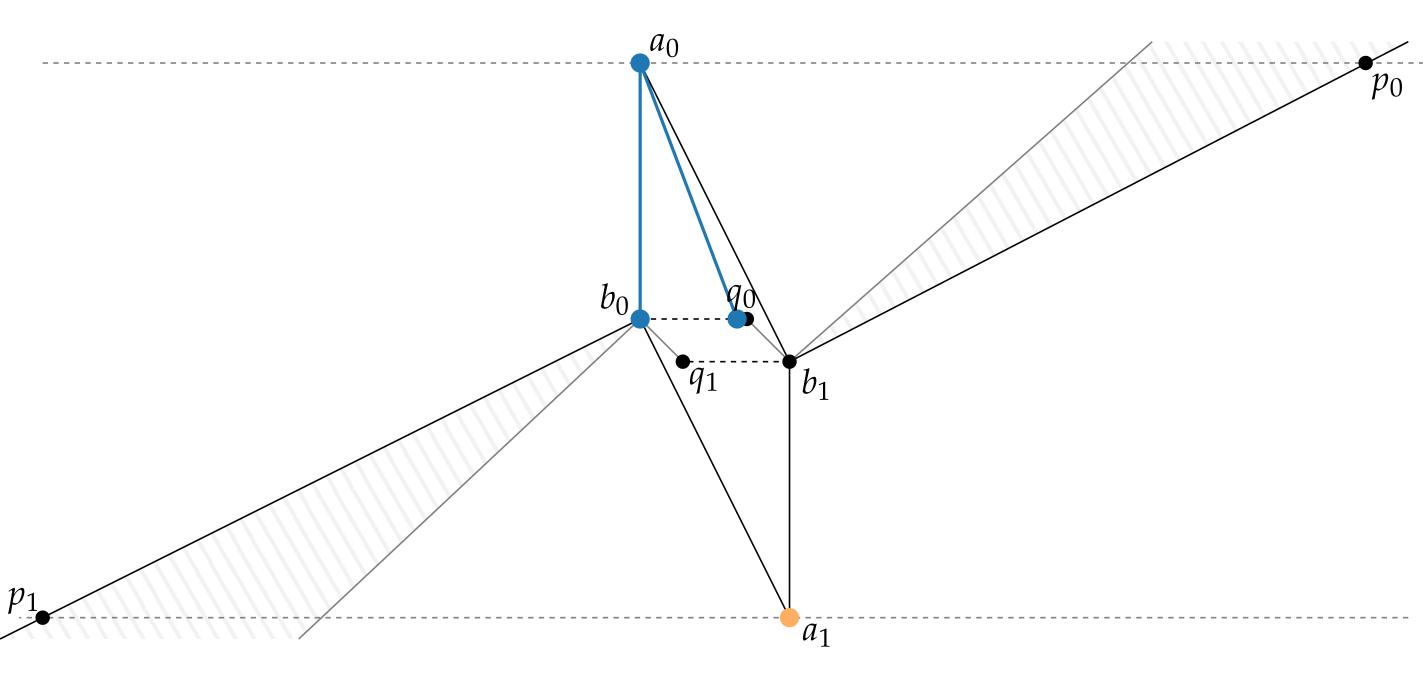


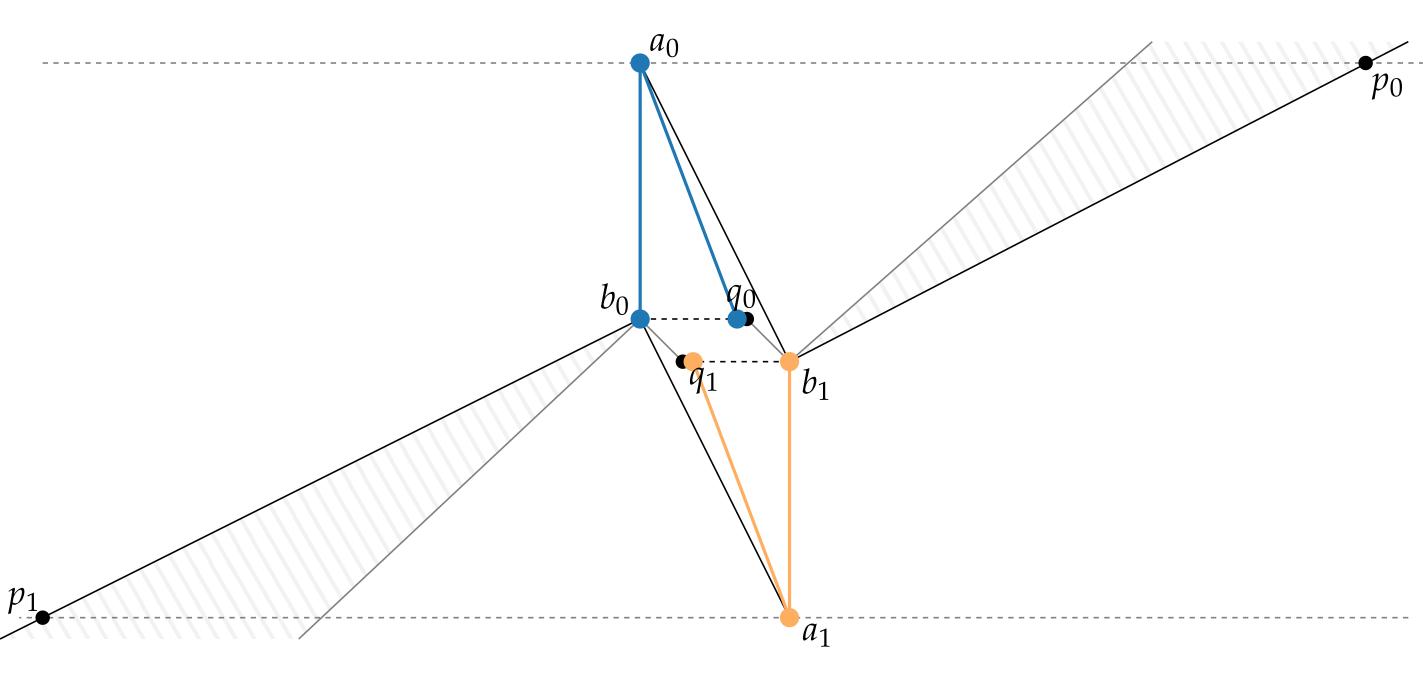


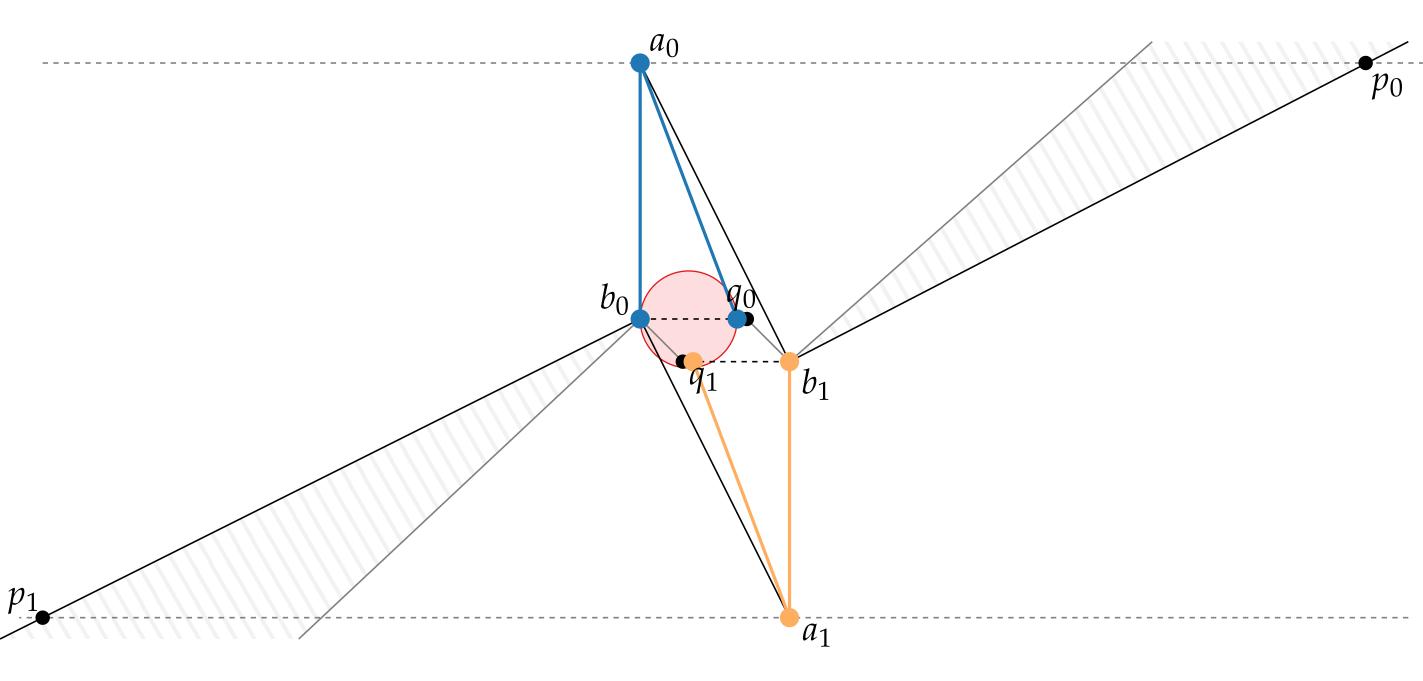


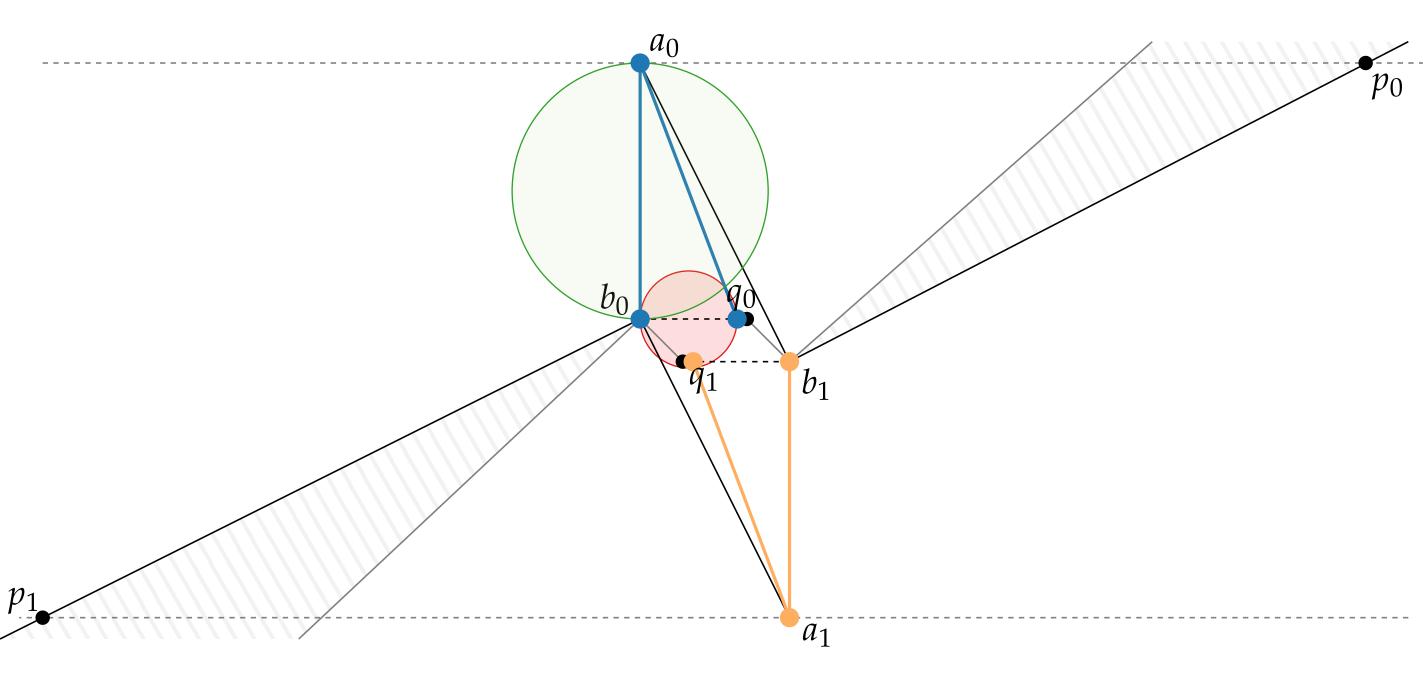


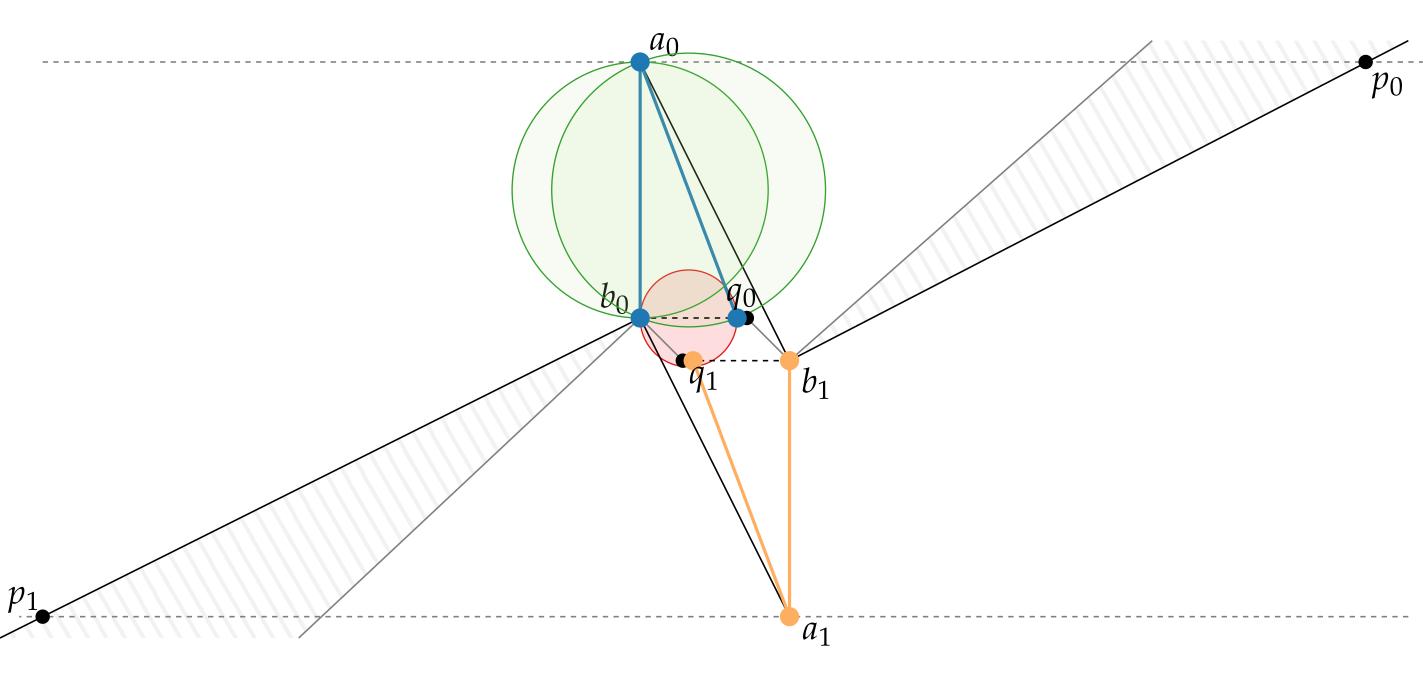


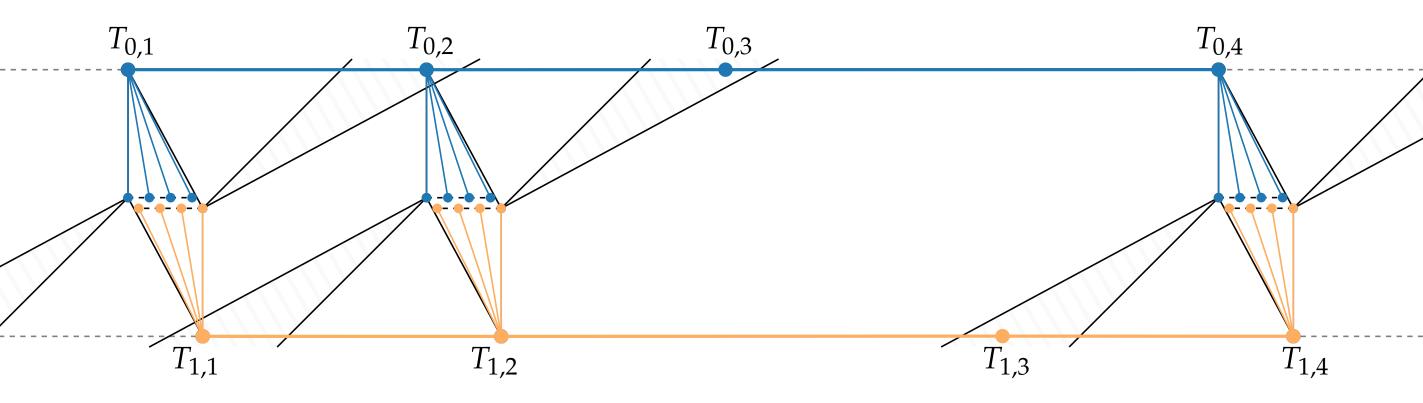




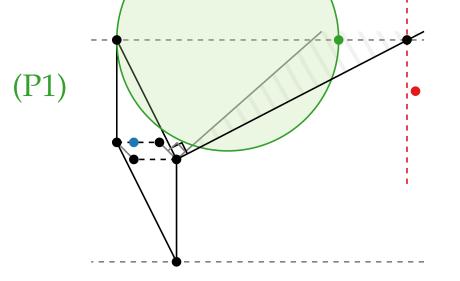


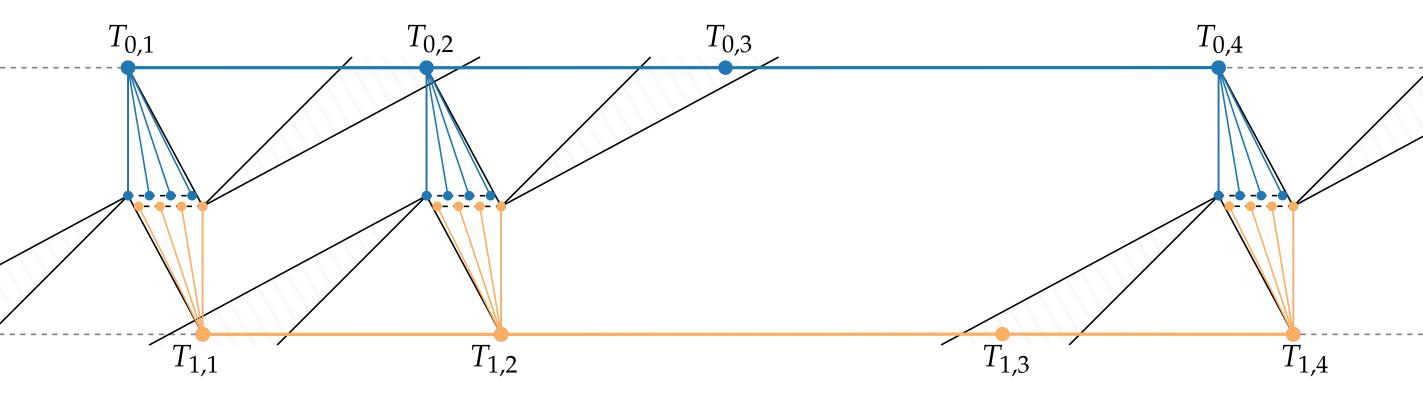




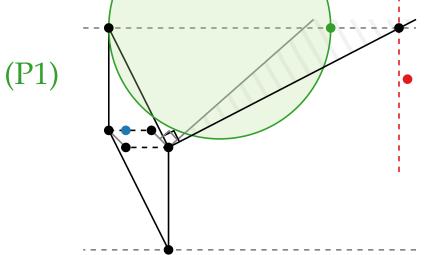


(P1) ensures that there **are edges** between the root of $T_{i,j}$ and $T_{i,j+1}$.

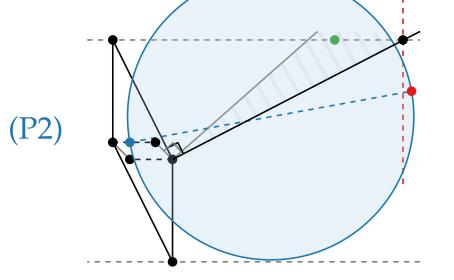


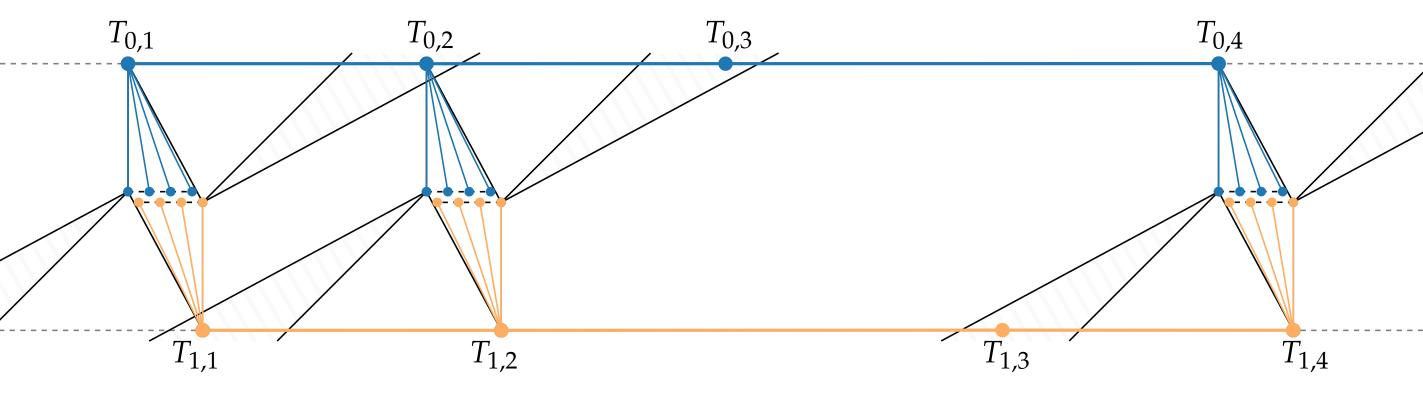


(P1) ensures that there **are edges** between the root of $T_{i,j}$ and $T_{i,j+1}$. $T_{\emptyset,1}$ $T_{0,3}$ $T_{0,4}$ $T_{0,2}$ T_{1,1} *T*_{1,2} *T*_{1,3} $T_{1,4}$

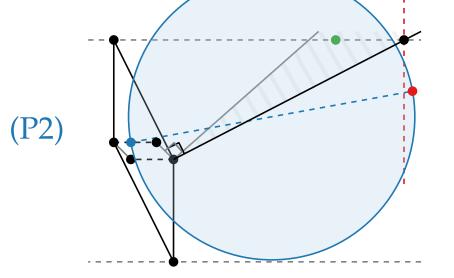


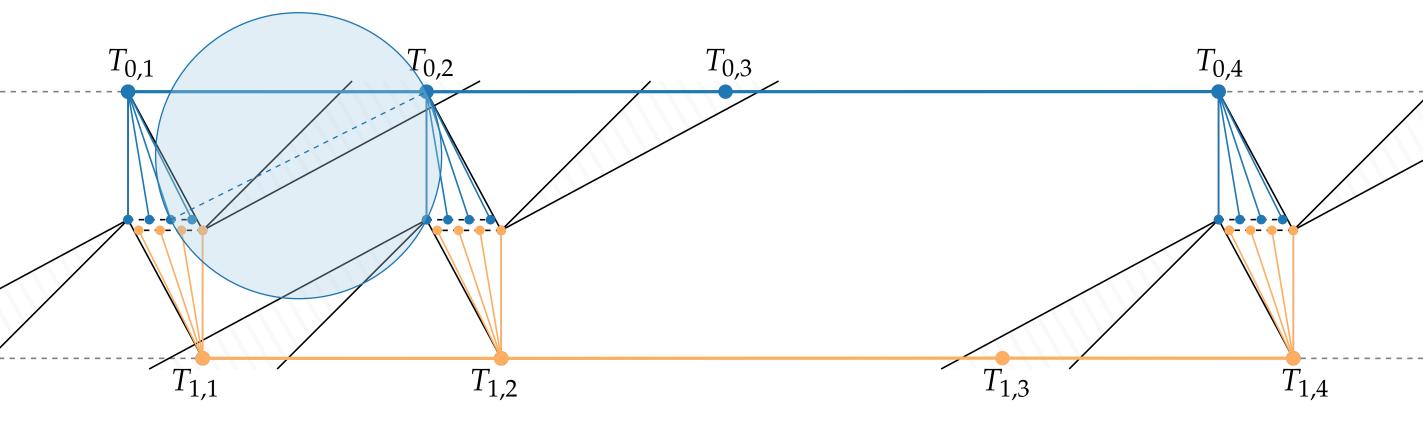
- (P1) ensures that there **are edges** between the root of $T_{i,j}$ and $T_{i,j+1}$.
- (P2) ensures that there are **no edges** between leaves of $T_{i,j}$ and any vertex of $T_{i,j+1}$.



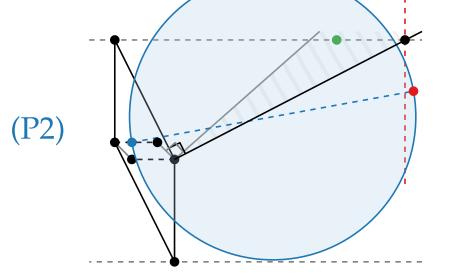


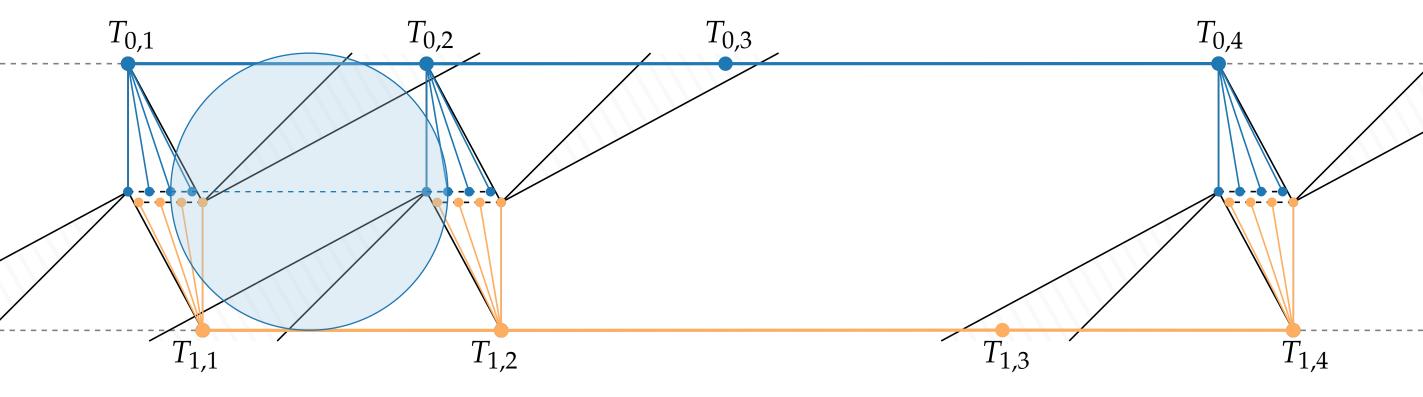
- (P1) ensures that there **are edges** between the root of $T_{i,j}$ and $T_{i,j+1}$.
- (P2) ensures that there are **no edges** between leaves of $T_{i,j}$ and any vertex of $T_{i,j+1}$.





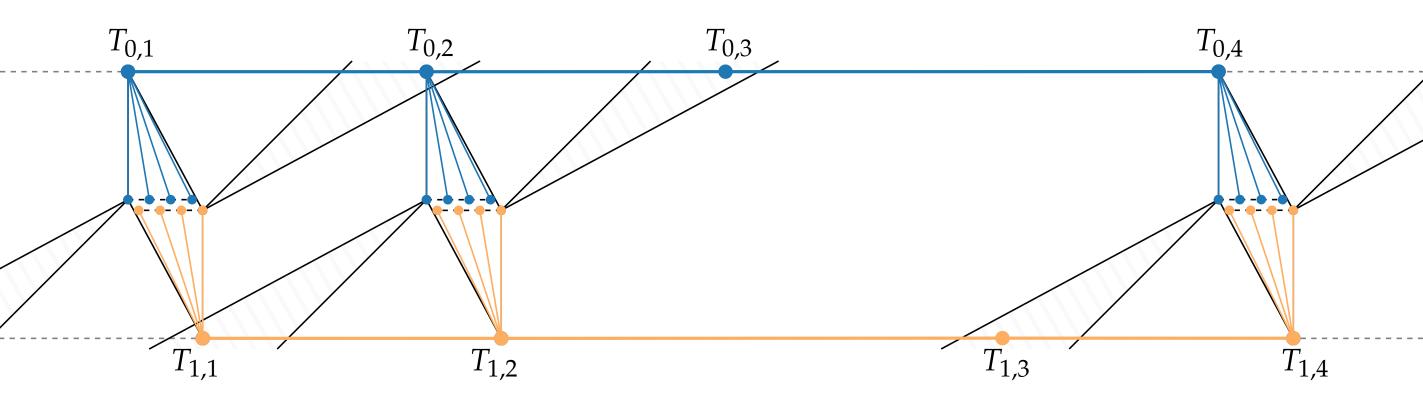
- (P1) ensures that there **are edges** between the root of $T_{i,j}$ and $T_{i,j+1}$.
- (P2) ensures that there are **no edges** between leaves of $T_{i,j}$ and any vertex of $T_{i,j+1}$.

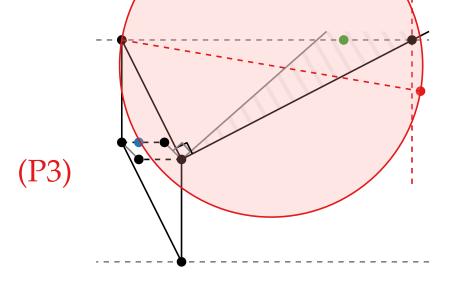




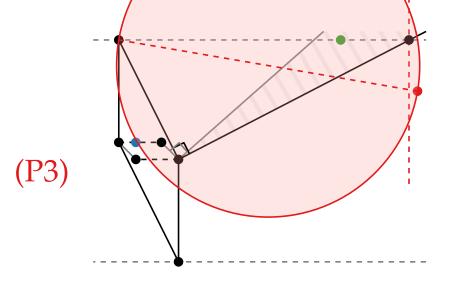
- (P1) ensures that there **are edges** between the root of $T_{i,j}$ and $T_{i,j+1}$.
- (P2) ensures that there are **no edges** between leaves of $T_{i,j}$ and any vertex of $T_{i,j+1}$.

(P3) ensures that there are **no edges** between the root of $T_{i,j}$ and leaves of $T_{i,j+1}$.



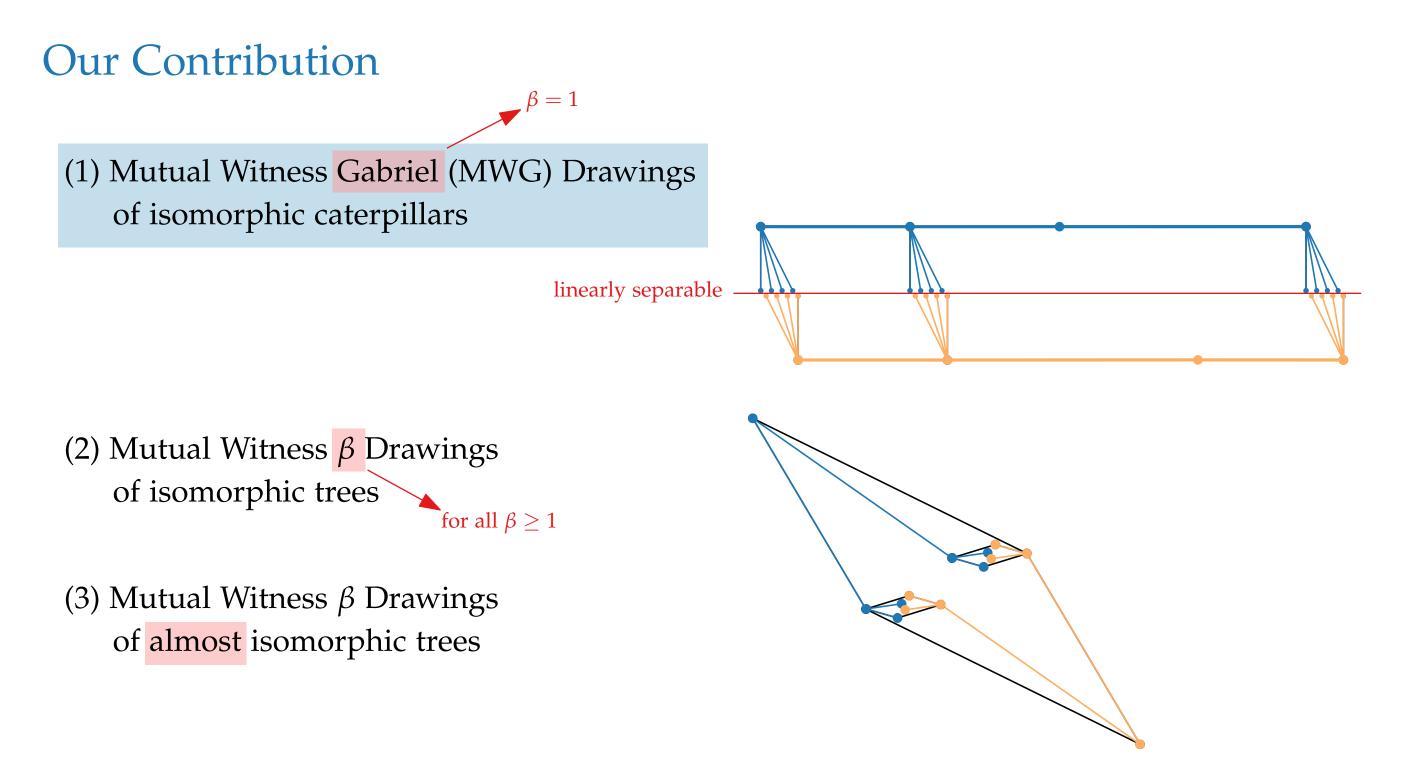


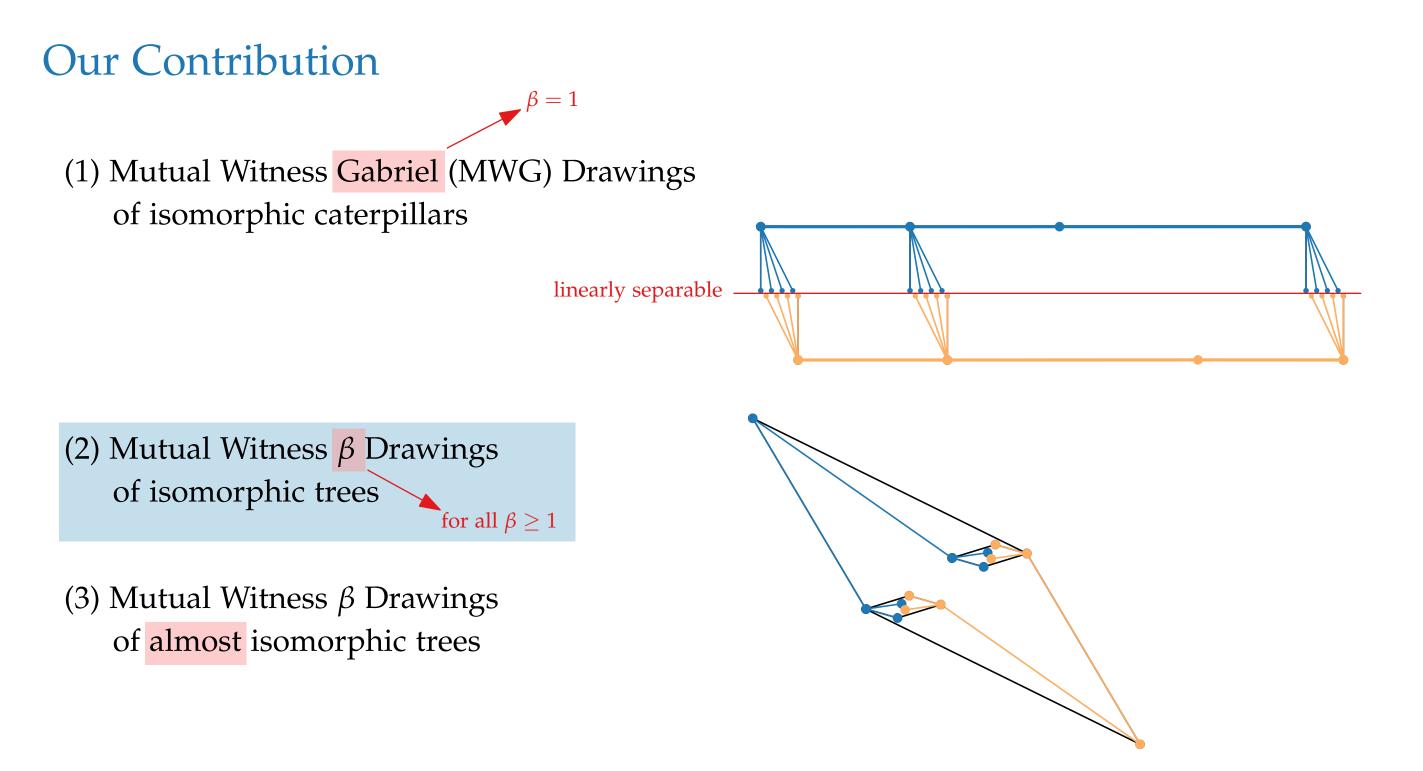
- (P1) ensures that there **are edges** between the root of $T_{i,j}$ and $T_{i,j+1}$.
- (P2) ensures that there are **no edges** between leaves of $T_{i,j}$ and any vertex of $T_{i,j+1}$.

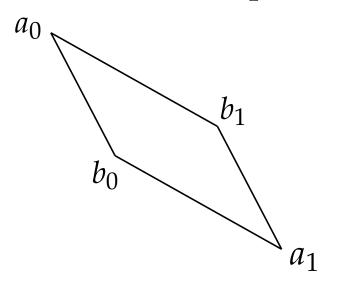


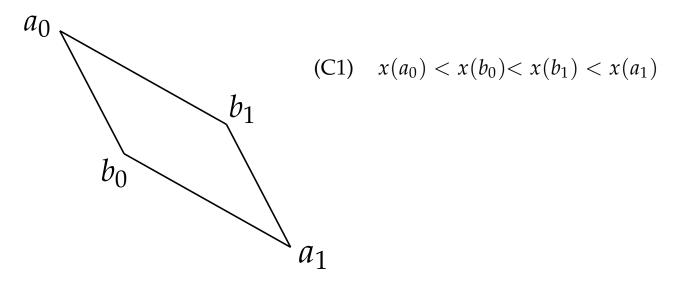
(P3) ensures that there are **no edges** between the root of $T_{i,j}$ and leaves of $T_{i,j+1}$.

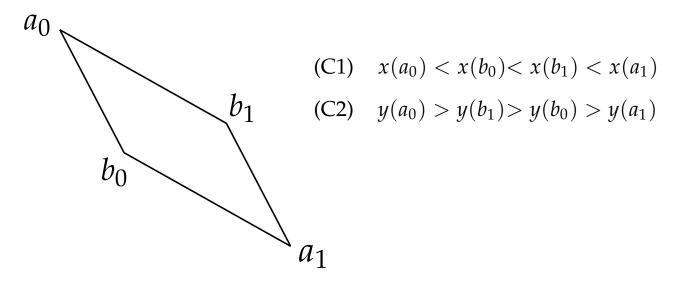


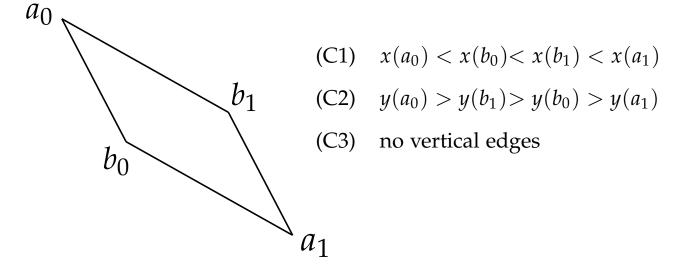


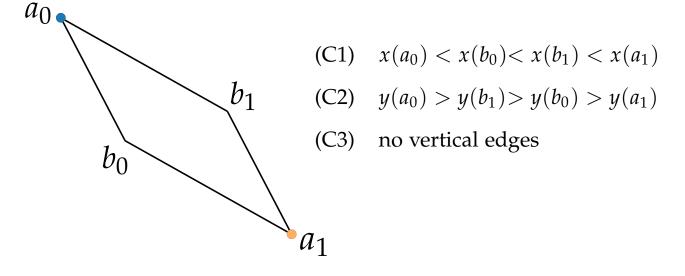




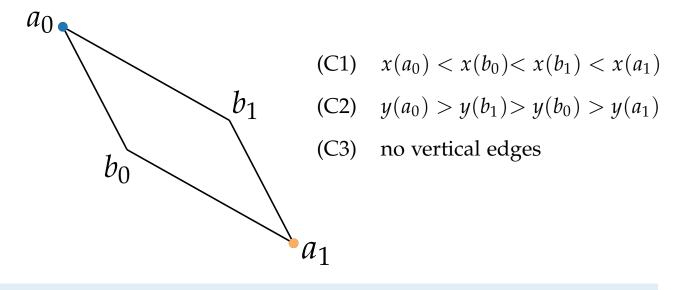






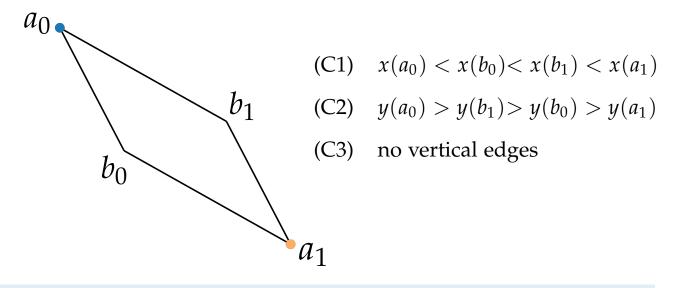


Subtrees inside parallelograms:

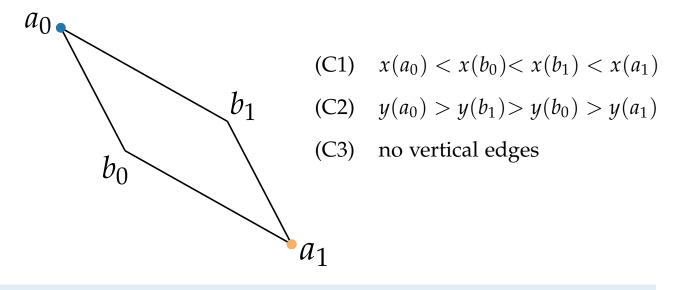


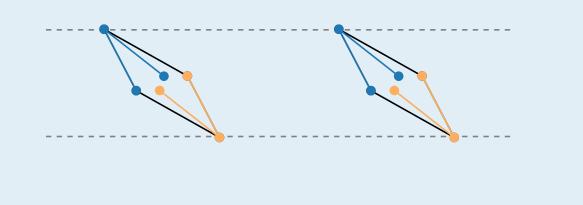
Step 1:

Subtrees inside parallelograms:

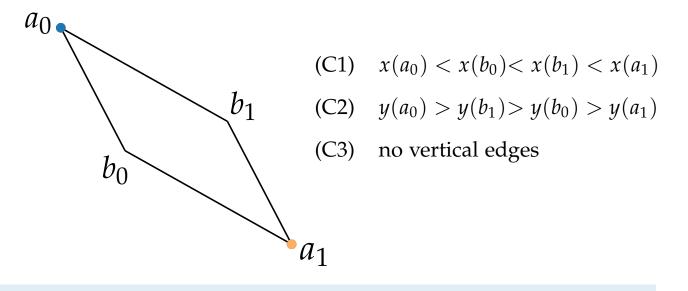


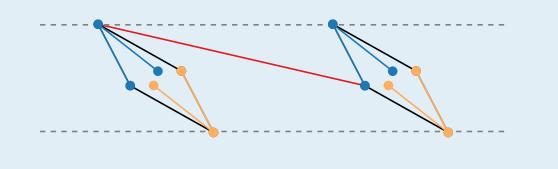
Subtrees inside parallelograms:



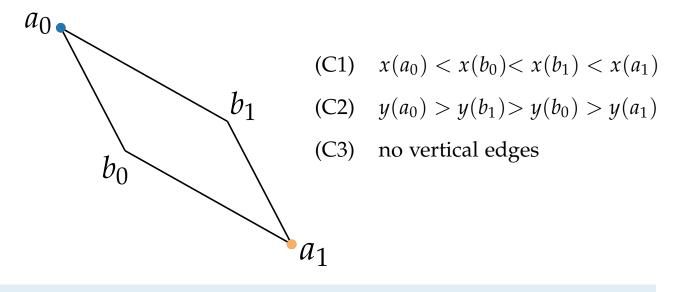


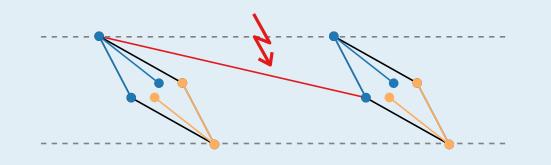
Subtrees inside parallelograms:



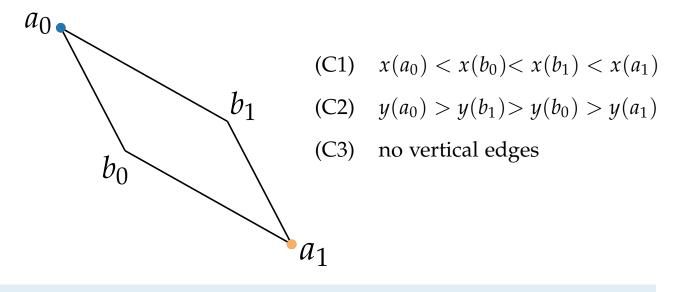


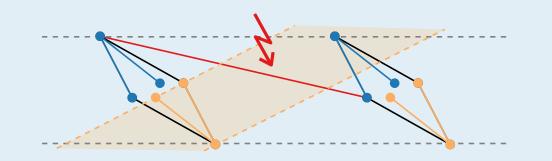
Subtrees inside parallelograms:

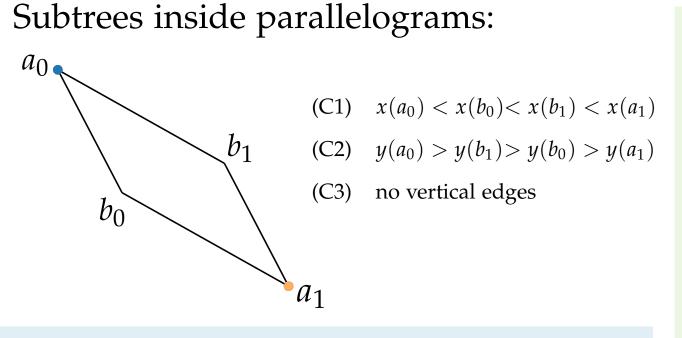




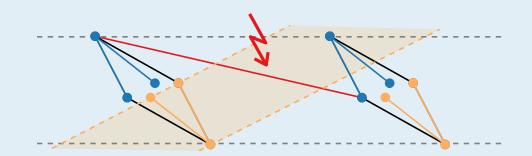
Subtrees inside parallelograms:





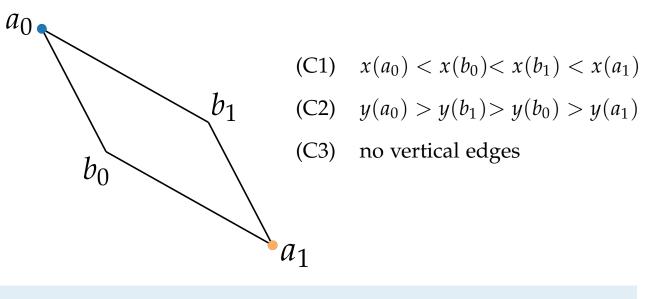


Step 1: place subtrees next to each other

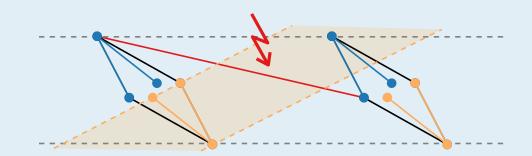


Step 2:

Subtrees inside parallelograms:



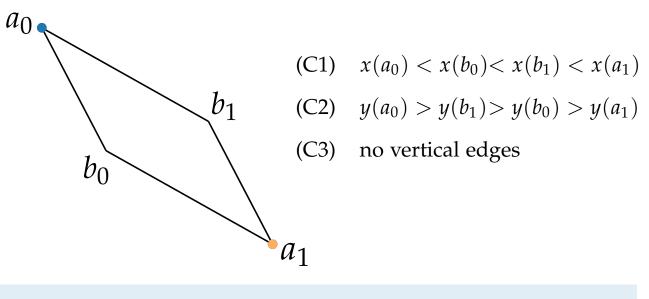
Step 1: place subtrees next to each other



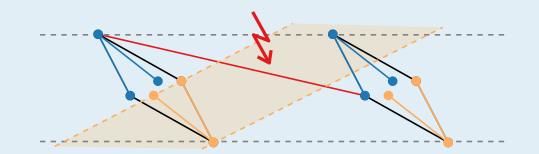
Step 2:

add root to subtrees

Subtrees inside parallelograms:

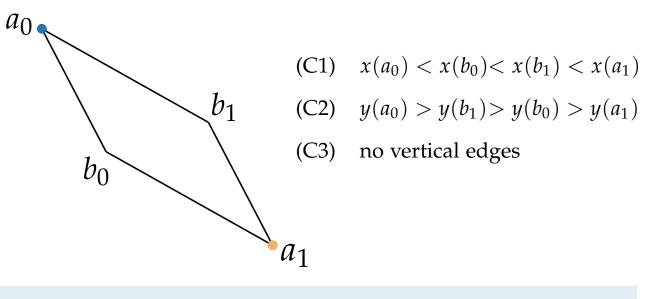


Step 1: place subtrees next to each other

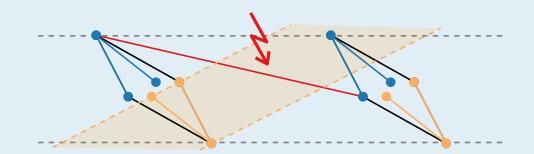


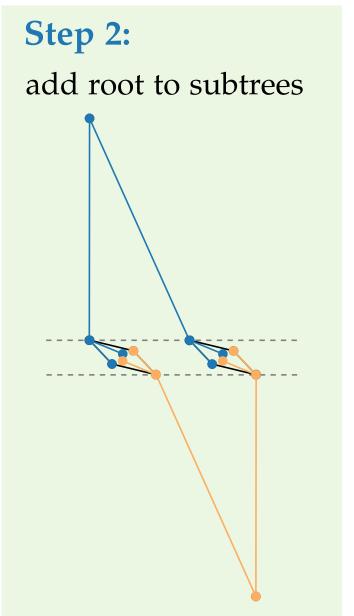
Step 2:

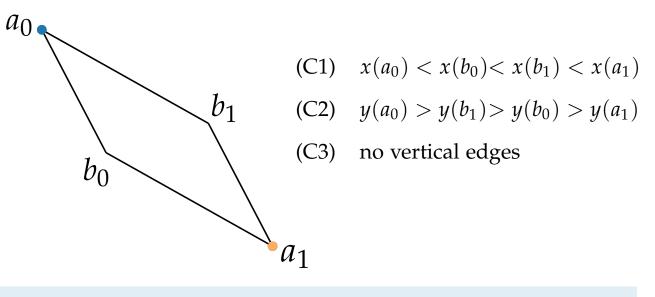
add root to subtrees



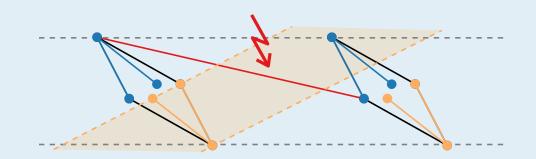
Step 1: place subtrees next to each other

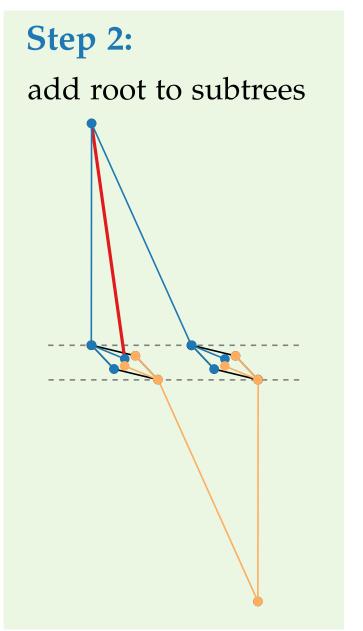




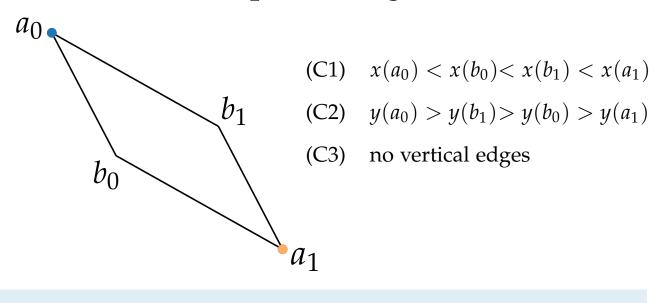


Step 1: place subtrees next to each other

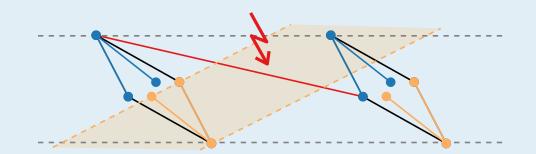




Subtrees inside parallelograms:

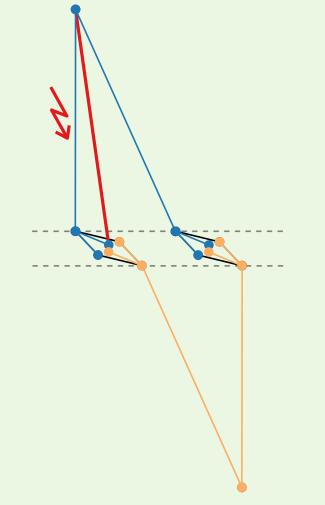


Step 1: place subtrees next to each other

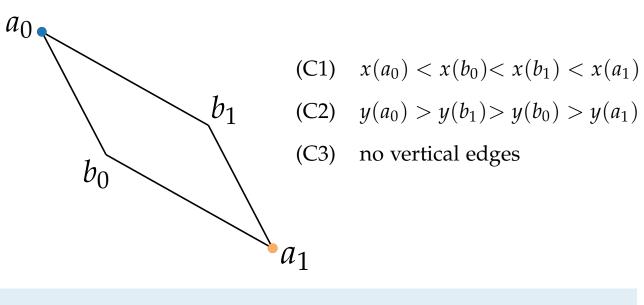


Step 2:

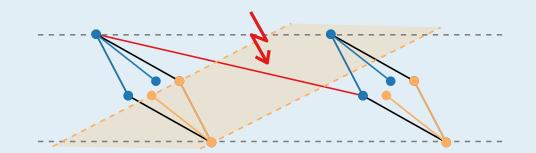
add root to subtrees

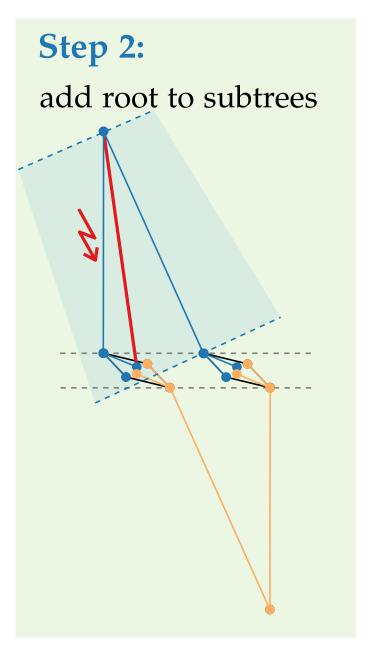


Subtrees inside parallelograms:

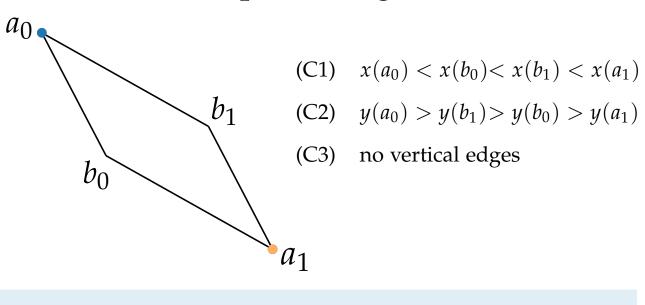


Step 1: place subtrees next to each other

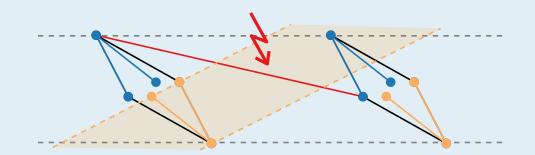




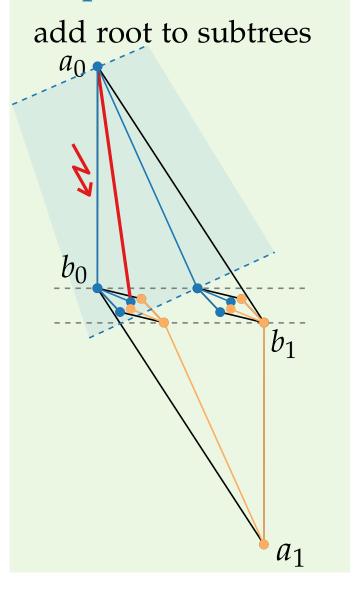
Subtrees inside parallelograms:



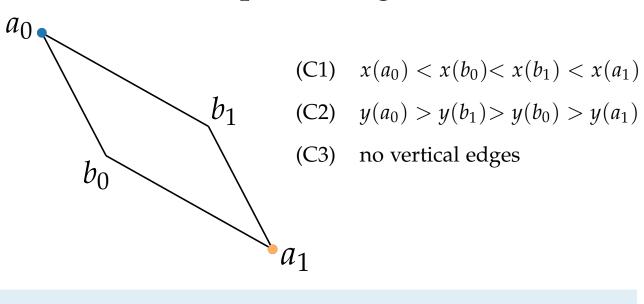
Step 1: place subtrees next to each other



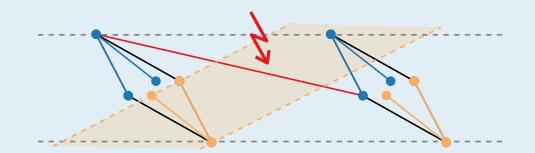
Step 2:

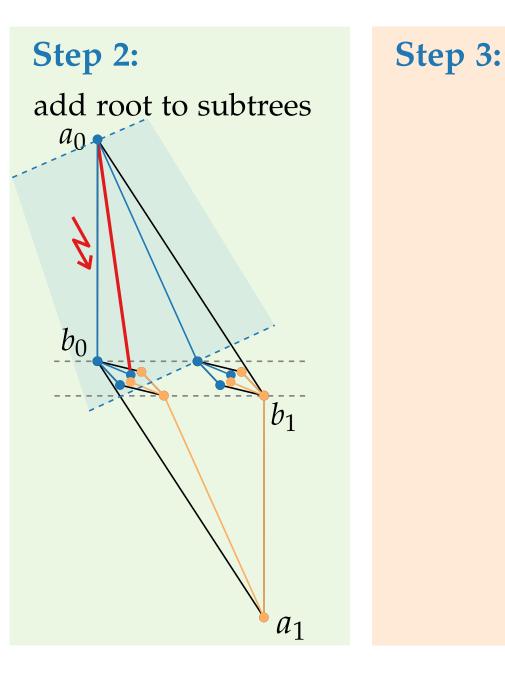


Subtrees inside parallelograms:

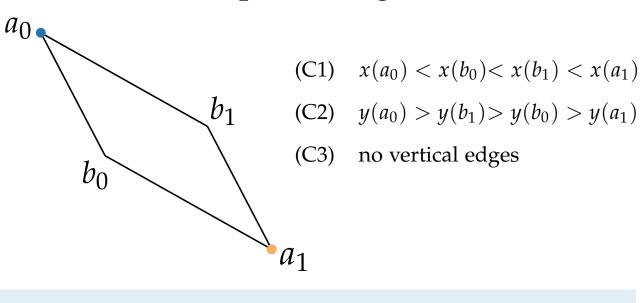


Step 1: place subtrees next to each other

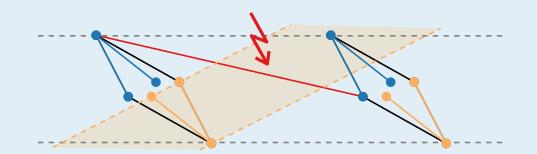


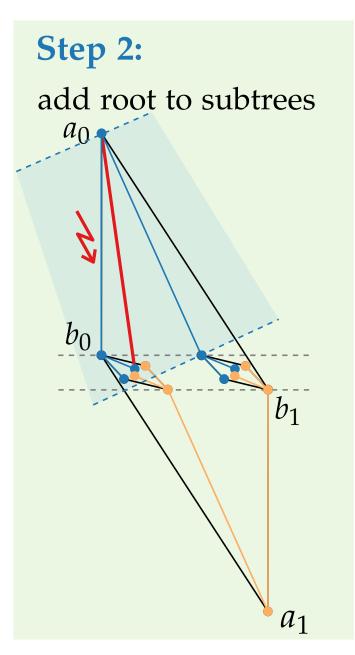


Subtrees inside parallelograms:



Step 1: place subtrees next to each other

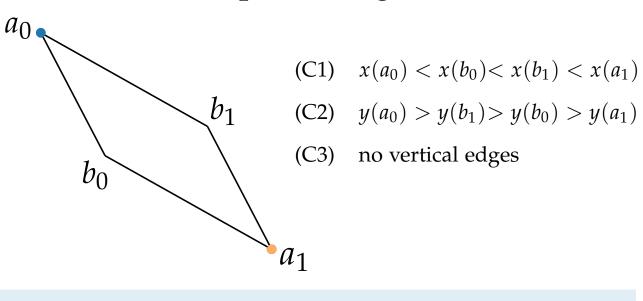




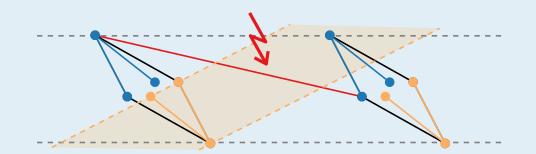
Step 3:

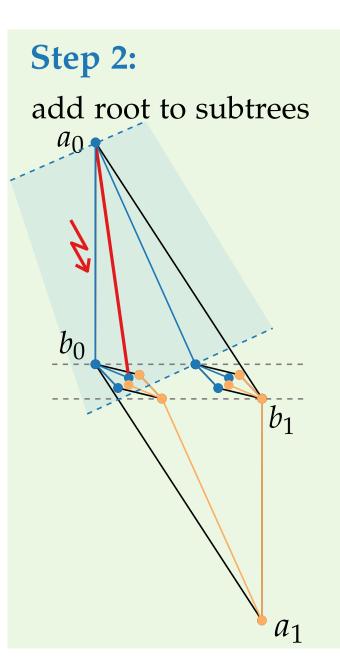
rotate, such that (C1), (C2) and (C3) are satisfied

Subtrees inside parallelograms:



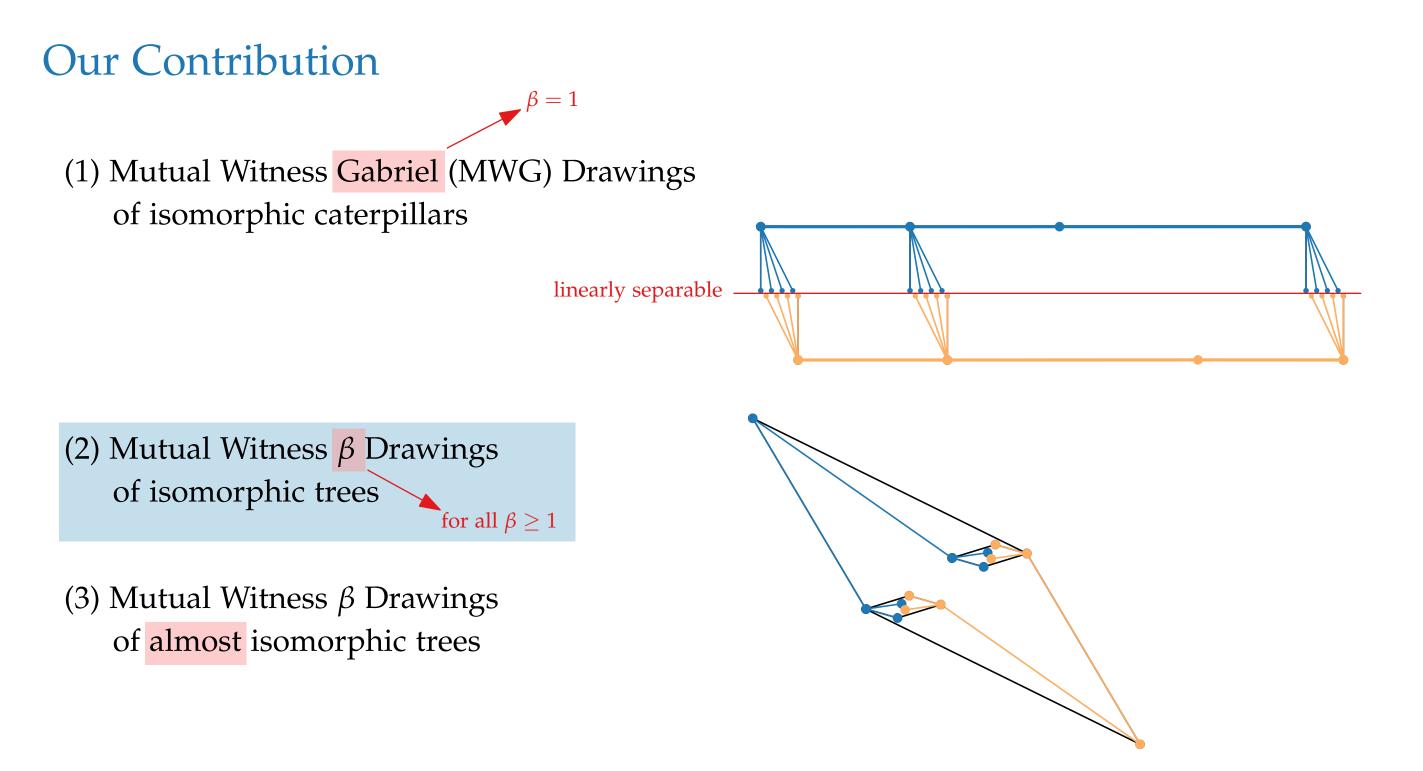
Step 1: place subtrees next to each other

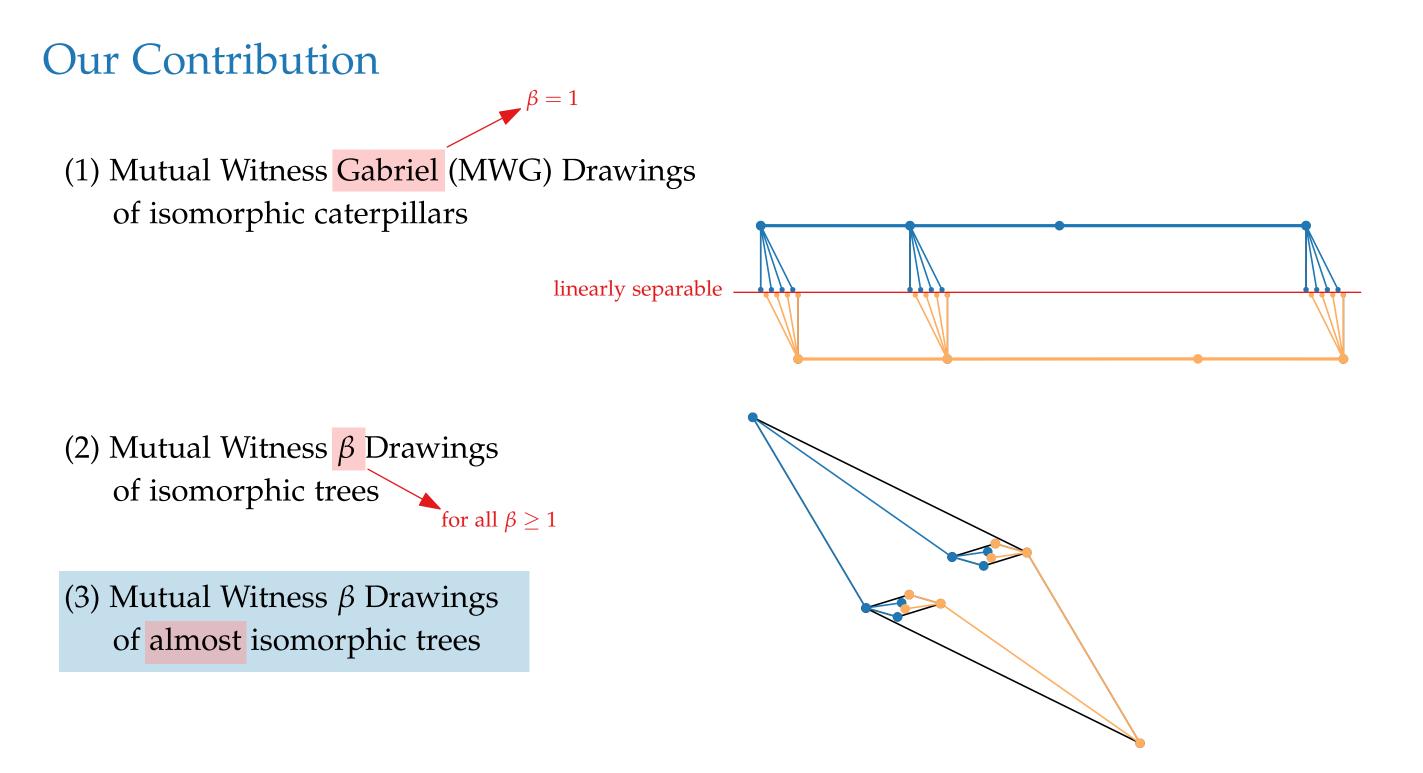


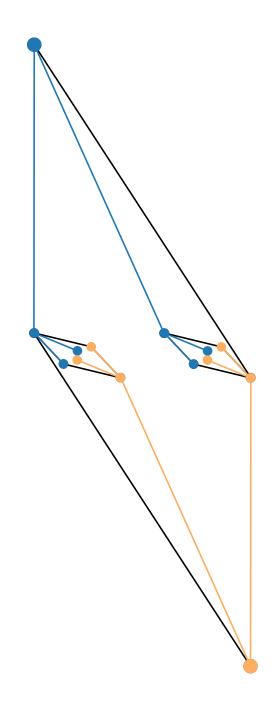


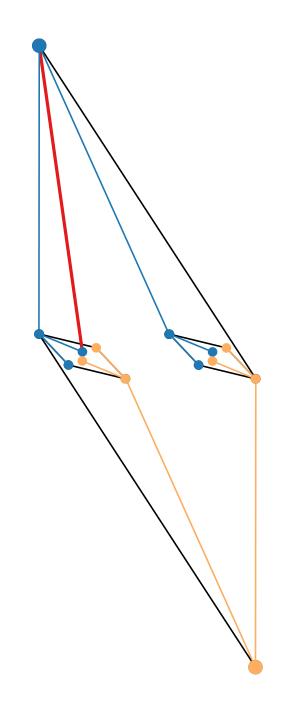
Step 3:

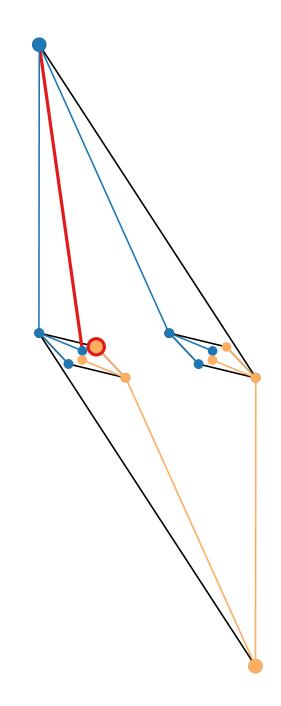
rotate, such that (C1), (C2) and (C3) are satisfied

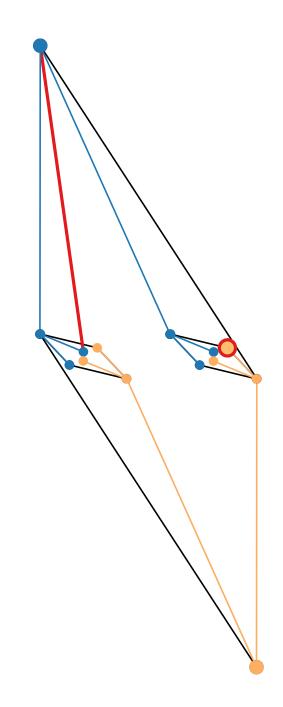


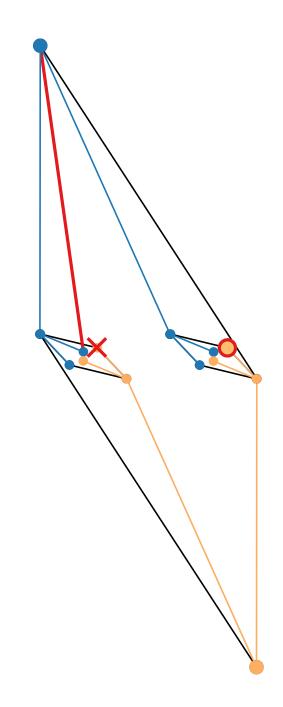




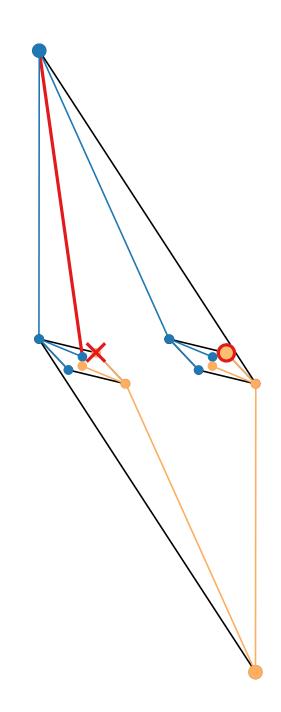




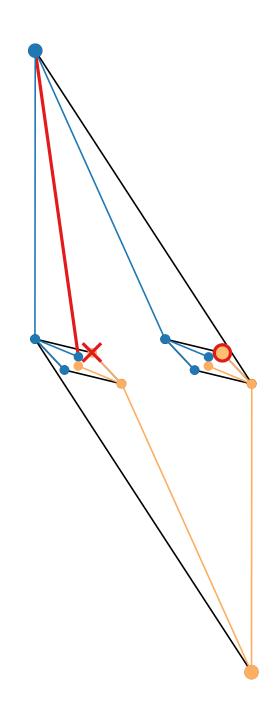




Theorem



Theorem



Theorem



Theorem

Theorem

Let (T, r) be a rooted tree and let \mathcal{L} be a sparse set of leaves of T. Then the pair $\langle T, T \setminus \mathcal{L} \rangle$ of trees admits an MW- β drawing for all $\beta \in [1, \infty]$.

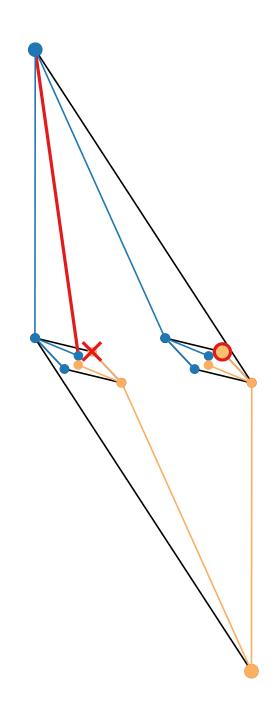
(1) at least one sibling, no sibling in \mathcal{L}

Theorem

Let (T, r) be a rooted tree and let \mathcal{L} be a sparse set of leaves of T. Then the pair $\langle T, T \setminus \mathcal{L} \rangle$ of trees admits an MW- β drawing for all $\beta \in [1, \infty]$.

(1) at least one sibling, no sibling in \mathcal{L}

(2) at least one cousin $w \notin \mathcal{L}$, no sibling of w in \mathcal{L}

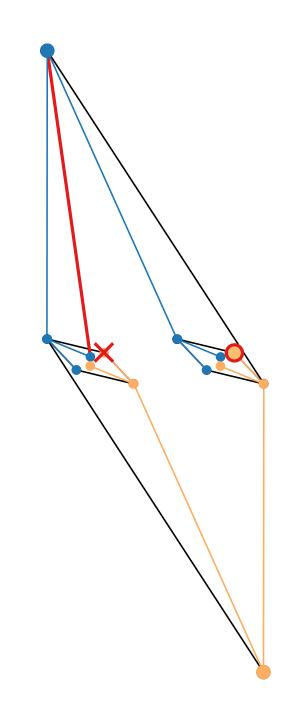


Theorem

Let (T, r) be a rooted tree and let \mathcal{L} be a sparse set of leaves of T. Then the pair $\langle T, T \setminus \mathcal{L} \rangle$ of trees admits an MW- β drawing for all $\beta \in [1, \infty]$. (1) at least one sibling, no sibling in \mathcal{L} (2) at least one cousin $w \notin \mathcal{L}$, no sibling of w in \mathcal{L}

Corollary

For any $m \ge 1$ and n = 6m + 1, there exist tree pairs $\langle T_0, T_1 \rangle$ with $|V(T_1)| \le 1 + \frac{5}{6}(|V(T_0)| - 1)$ that admit an MW- β drawing for all $\beta \in [1, \infty]$.



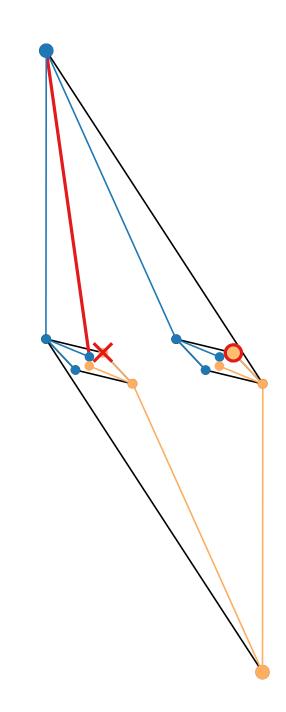
(2) at least one cousin $w \notin \mathcal{L}$, no sibling of w in \mathcal{L}

Theorem

Let (T, r) be a rooted tree and let \mathcal{L} be a sparse set of leaves of T. Then the pair $\langle T, T \setminus \mathcal{L} \rangle$ of trees admits an MW- β drawing for all $\beta \in [1, \infty]$. (1) at least one sibling, no sibling in \mathcal{L}

Corollary

For any $m \ge 1$ and n = 6m + 1, there exist tree pairs $\langle T_0, T_1 \rangle$ with $|V(T_1)| \le 1 + \frac{5}{6}(|V(T_0)| - 1)$ that admit an MW- β drawing for all $\beta \in [1, \infty]$.



(2) at least one cousin $w \notin \mathcal{L}$, no sibling of w in \mathcal{L}

 r_m

Theorem

Let (T, r) be a rooted tree and let \mathcal{L} be a sparse set of leaves of T. Then the pair $\langle T, T \setminus \mathcal{L} \rangle$ of trees admits an MW- β drawing for all $\beta \in [1, \infty]$. (1) at least one sibling, no sibling in \mathcal{L}

Corollary

r1

For any $m \ge 1$ and n = 6m + 1, there exist tree pairs $\langle T_0, T_1 \rangle$ with $|V(T_1)| \le 1 + \frac{5}{6}(|V(T_0)| - 1)$ that admit an MW- β drawing for all $\beta \in [1, \infty]$.

r,

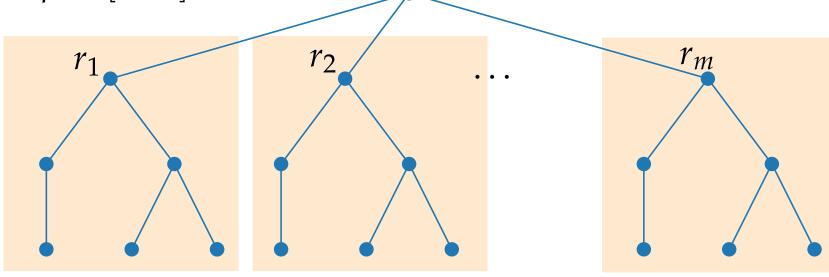
(2) at least one cousin $w \notin \mathcal{L}$, no sibling of w in \mathcal{L}

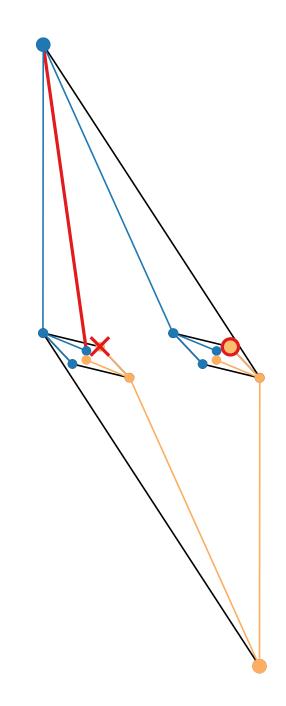
Theorem

Let (T, r) be a rooted tree and let \mathcal{L} be a sparse set of leaves of T. Then the pair $\langle T, T \setminus \mathcal{L} \rangle$ of trees admits an MW- β drawing for all $\beta \in [1, \infty]$. (1) at least one sibling, no sibling in \mathcal{L}

Corollary

For any $m \ge 1$ and n = 6m + 1, there exist tree pairs $\langle T_0, T_1 \rangle$ with $|V(T_1)| \le 1 + \frac{5}{6}(|V(T_0)| - 1)$ that admit an MW- β drawing for all $\beta \in [1, \infty]$.





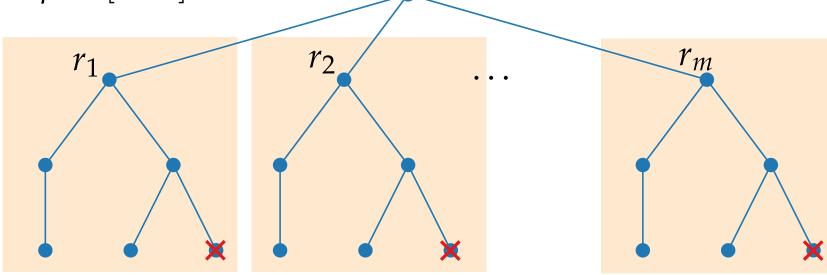
(2) at least one cousin $w \notin \mathcal{L}$, no sibling of w in \mathcal{L}

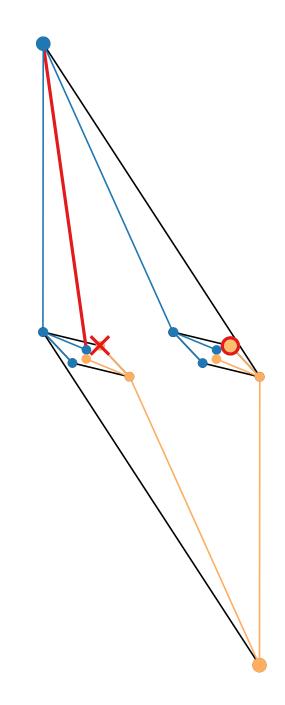
Theorem

Let (T, r) be a rooted tree and let \mathcal{L} be a sparse set of leaves of T. Then the pair $\langle T, T \setminus \mathcal{L} \rangle$ of trees admits an MW- β drawing for all $\beta \in [1, \infty]$. (1) at least one sibling, no sibling in \mathcal{L}

Corollary

For any $m \ge 1$ and n = 6m + 1, there exist tree pairs $\langle T_0, T_1 \rangle$ with $|V(T_1)| \le 1 + \frac{5}{6}(|V(T_0)| - 1)$ that admit an MW- β drawing for all $\beta \in [1, \infty]$.





Theorem 1

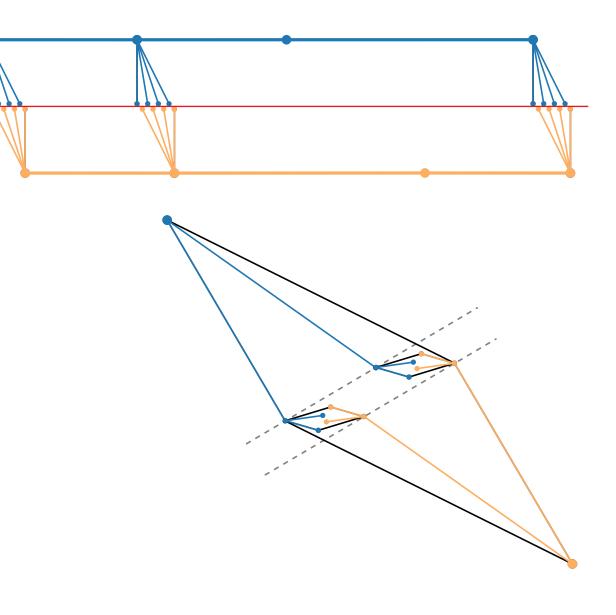
Any pair $\langle T_0, T_1 \rangle$ of isomorphic caterpillars admits a linearly separable MW-Gabriel drawing.

Theorem 1

Any pair $\langle T_0, T_1 \rangle$ of isomorphic caterpillars admits a linearly separable MW-Gabriel drawing.

Theorem 2

Any two isomorphic trees $\langle T_0, T_1 \rangle$ admit a MW- β -drawing for all $\beta \in [1, \infty]$.



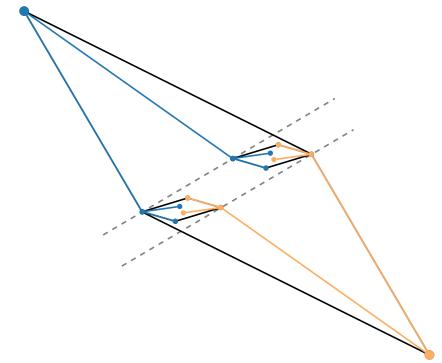
Theorem 1

Any pair $\langle T_0, T_1 \rangle$ of isomorphic caterpillars admits a linearly separable MW-Gabriel drawing.

Theorem 2

Any two isomorphic trees $\langle T_0, T_1 \rangle$ admit a MW- β -drawing for all $\beta \in [1, \infty]$.

Theorem 3



Theorem 1

Any pair $\langle T_0, T_1 \rangle$ of isomorphic caterpillars admits a linearly separable MW-Gabriel drawing.

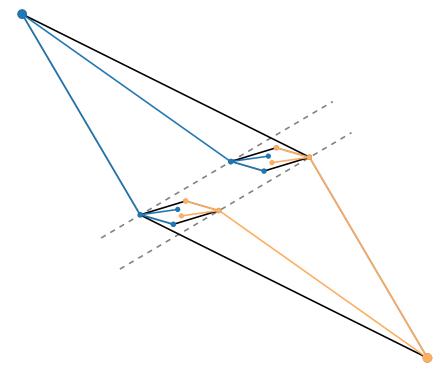
Theorem 2

Any two isomorphic trees $\langle T_0, T_1 \rangle$ admit a MW- β -drawing for all $\beta \in [1, \infty]$.

Theorem 3

Let (T, r) be a rooted tree and let \mathcal{L} be a sparse set of leaves of T. Then the pair $\langle T, T \setminus \mathcal{L} \rangle$ of trees admits an MW- β drawing for all $\beta \in [1, \infty]$.

Open Questions



Theorem 1

Any pair $\langle T_0, T_1 \rangle$ of isomorphic caterpillars admits a linearly separable MW-Gabriel drawing.

Theorem 2

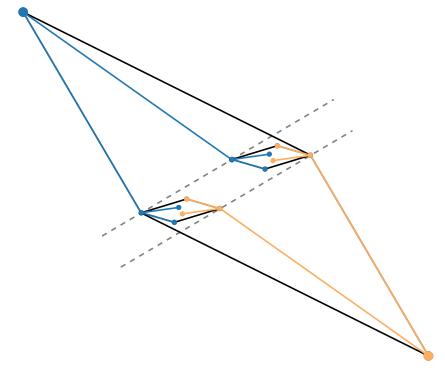
Any two isomorphic trees $\langle T_0, T_1 \rangle$ admit a MW- β -drawing for all $\beta \in [1, \infty]$.

Theorem 3

Let (T, r) be a rooted tree and let \mathcal{L} be a sparse set of leaves of T. Then the pair $\langle T, T \setminus \mathcal{L} \rangle$ of trees admits an MW- β drawing for all $\beta \in [1, \infty]$.

Open Questions

• linearly separable drawings for **any** pair of isomorphic trees?



Theorem 1

Any pair $\langle T_0, T_1 \rangle$ of isomorphic caterpillars admits a linearly separable MW-Gabriel drawing.

Theorem 2

Any two isomorphic trees $\langle T_0, T_1 \rangle$ admit a MW- β -drawing for all $\beta \in [1, \infty]$.

Theorem 3

Let (T, r) be a rooted tree and let \mathcal{L} be a sparse set of leaves of T. Then the pair $\langle T, T \setminus \mathcal{L} \rangle$ of trees admits an MW- β drawing for all $\beta \in [1, \infty]$.

Open Questions

- linearly separable drawings for **any** pair of isomorphic trees?
- characterization of pairs of non-isomorphic trees that are drawable?

