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The game of Cops and Robbers

Cops and Robber ¥ is a game on a graph such that

- Cs and R see each other and the graph; Q 0
- Cs and R alternate moves;
- the game is over when either o o
Cs catch R or a cycle has cop number 2

R can move indefinitely.

The cop number ¢(G) is the minimum # of Cs to catch R.
Why we care:
- variants generalize treewidth, treedepth, flip-width, ...
- applications in graph searching and robotics;
- interesting from a GD point of view!
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Thm. treewidth(outer k-planar graph) < 3k + 11.

? < c(outer k-planar graph) < 1.5k + 6.5.
Prob. Improve the bounds.
Thm. stack number(G) < treewidth(G) + 1.

Ques. ¢(G) < stack number(G)?



