Eliminating Popular Faces in Curve Arrangements

Utrecht University

Phoebe de Nooijer Tamara Mchedlidze Maarten Löffler

Alexandra Weinberger

Günter Rote

A project started at 16th European Research Week on Geometric Graphs (GGWeek) in Strobl (AT), 2019

I S T AUSTRIA

Zuzana Masárová

1

Outline

Nonograms

acılı

						4								
					1	1	3		3	4	1		3	2
					2	1	6	7	6	4	3	2	1	3
			1	1										
			2	2										
				5										
	2	1	2	1										
·			5	2										
			3	1										
			6	2										
·		1	5	1										
				8										
			2	4										

acilii

┍║║╸

acili	
-------	--

		4								
	1	1	3		3	4	1		3	2
	2	1	6	7	6	4	3	2	1	3
1 1										
2 2										
5										
2 1 2 1										
52										
3 1										
6 2										
1 5 1										
8										
24										

acili	
-------	--

				4								
			1	1	3		3	4	1		3	2
			2	1	6	7	6	4	3	2	1	3
	1	1										
	2	2										
		5										
2 1	2	1										
	5	2										
	3	1										
	6	2										
1	5	1										
	2	4										

				1 2	4 1 1	3 6	7	3 6	4 4	1 3	2	3 1	2 3
		1	1										
		2	2										
			5										
2	1	2	1										
		5	2										
		3	1										
		6	2										
	1	5	1										
			8										
		2	4										

acilii

			1 2	4 1 1	3 6	7	3 6	4 4	1 3	2	3 1	2 3
	1	1										
	2	2										
		5										
2 1	2	1										
	5	2										
	3	1										
	6	2										
1	5	1										
		8										
	2	4										

Popular with consumers...

Pixel image

...and scientists [Batenburg & Kosters, '09] [Yu et al., '11] [Batenburg & Kosters, '12] [Berend et al., '14] [Chen & Lin, '19]

Entertainment

...and scientists [Batenburg & Kosters, '09] [Yu et al., '11] [Batenburg & Kosters, '12] [Berend et al., '14] [Chen & Lin, '19] Pixel image

Curved image?

Nonograms (Griddlers, 判じ絵, Picross,...)

3

this column

Nonograms (Griddlers, 判じ絵, Picross,...)

Nonograms (Griddlers, 判じ絵, Picross,...)

Nonograms (Griddlers, 判じ絵, Picross,...)

Nonograms (Griddlers, 判じ絵, Picross,...)

Nonograms (Griddlers, 判じ絵, Picross,...)

[van de Kerkhof et al., '19]

Curved Nonograms

Good: Previous work for generating nonograms [Parment, '15] [de Jong, '16] [van de Kerkhof, '17] [van de Kerkhof et al., '19]

Curved Nonograms

Good: Previous work for generating nonograms [Parment, '15] [de Jong, '16] [van de Kerkhof, '17] [van de Kerkhof et al., '19]

Bad: Creates mostly **advanced** nonograms

Unique faces along curves

Unique faces along curves

Unique faces

along curves

Repeated (<mark>popular</mark>) faces along curves

Unique faces along curves

Repeated (**popular**) faces along curves

Unique faces along curves Repeated (**popular**) faces along curves

Unique faces along curves

Repeated (**popular**) faces along curves

Unique faces along curves

Repeated (**popular**) faces along curves

Basic

[van de Kerkhof et al., '19]

Unique faces along curves

Repeated (**popular**) faces along curves

Types of Nonograms [van de Kerkhof et al., '19] 2 Basic **Advanced** 111

acili

Unique faces along curves

Repeated (**popular**) faces along curves
Outline

acılı

Nonograms

How to remove popular faces

[van de Kerkhof et al., '19]

We do not want to change existing geometry!

[van de Kerkhof et al., '19]

Can we do it with just 1 resolution curve?

acılı

Resolution curves cross faces at most one time

acılı

acılı

Resolution curves cross faces at most one time

Curves appear ≤ 2 times on the boundary of F $\implies |F| \in \mathcal{O}(n)$

Resolution curves cross faces at most one time

╸║║

Curves appear ≤ 2 times on the boundary of F $\implies |F| \in \mathcal{O}(n)$

Resolution curves cross faces at most one time

┍║║

Curves appear ≤ 2 times on the boundary of F $\implies |F| \in \mathcal{O}(n)$

Resolution curves cross faces at most one time

Curves appear ≤ 2 times on the boundary of F $\implies |F| \in \mathcal{O}(n)$

Resolution curves cross faces at most one time

╸║║

Curves appear ≤ 2 times on the boundary of F $\implies |F| \in \mathcal{O}(n)$

Resolution curves cross faces at most one time

Curves appear ≤ 2 times on the boundary of F $\implies |F| \in \mathcal{O}(n)$

Resolution curves cross faces at most one time

┍║║╸

Curves appear ≤ 2 times on the boundary of F $\implies |F| \in \mathcal{O}(n)$

Outline

acılı

Nonograms

How to remove popular faces

Resolution with one curve is NP-complete...

Given: Graph G, embedded in \mathbb{R}^2

acilii

Given: Graph G, embedded in \mathbb{R}^2

Non-Crossing Eulerian Cycle [Bent & Manber, '87]

Given: Graph G, embedded in \mathbb{R}^2

Non-Crossing Eulerian Cycle [Bent & Manber, '87]

Given: Graph G, embedded in \mathbb{R}^2

Non-Crossing Eulerian Cycle [Bent & Manber, '87]

Given: Graph G, embedded in \mathbb{R}^2

Curve arrangement A (advanced)

acilli

Non-Crossing Eulerian Cycle [Bent & Manber, '87]

11

Given: Graph G, embedded in \mathbb{R}^2

Can be made basic with 1 resolution curve c

Non-Crossing Eulerian Cycle [Bent & Manber, '87]

Soeren Terziadis · Eliminating Popular Faces in Curve Arrangements
Adding a Single Curve is NP-complete

 \mathbf{O}

Given: Graph G, embedded in \mathbb{R}^2

acilli

Can be made basic with 1 resolution curve c

Non-Crossing Eulerian Cycle [Bent & Manber, '87]

11

Soeren Terziadis · Eliminating Popular Faces in Curve Arrangements

Outline

acılı

Nonograms

How to remove popular faces

Resolution with one curve is NP-complete...

...but we can do it randomized in FPT time

Soeren Terziadis · Eliminating Popular Faces in Curve Arrangements

acılı

Curve arrangement \mathcal{A}

.

acılı

Curve arrangement \mathcal{A}

.

Curve arrangement ${\cal A}$

Additional curve c

acili

Curve arrangement ${\cal A}$

Additional curve c

acili

acılı

Curve arrangement \mathcal{A} Additional curve c

Dual graph \mathcal{A}^{d}

.

acili

Curve arrangement \mathcal{A} Additional curve c Dual graph A^d walk ℓ

Soeren Terziadis · Eliminating Popular Faces in Curve Arrangements

Curve arrangement \mathcal{A} Additional curve c

Dual graph \mathcal{A}^{d} closed walk ℓ

Curve arrangement \mathcal{A} Additional curve c Dual graph A^d closed walk ℓ

Curve arrangement \mathcal{A} Additional curve c Dual graph A^d closed walk ℓ

Curve arrangement \mathcal{A} Additional curve c Dual graph \mathcal{A}^d closed walk ℓ

Curve arrangement \mathcal{A} Additional curve c Dual graph \mathcal{A}^d closed walk ℓ

Curve arrangement \mathcal{A} Additional curve c Dual graph \mathcal{A}^d closed walk ℓ

Curve arrangement \mathcal{A} Additional curve c

Dual graph \mathcal{A}^d Simple closed walk ℓ

$$\mathcal{S} = \{S_1, S_2, S_3\}$$

Computing Walks in Dual Graph with Dynamic Program ac^{\parallel} dual graph \mathcal{A}^{d}

 $\mathcal{S} = \{S_1, S_2, S_3\}$

Computing Walks in Dual Graph with Dynamic Program dual graph \mathcal{A}^d $\mathcal{S} = \{S_1, S_2, S_3\}$ Partial solution: Walk W

Computing Walks in Dual Graph with Dynamic Program ac in dual graph \mathcal{A}^d $\mathcal{S} = \{S_1, S_2, S_3\}$ Partial solution: Walk W

start at b

Computing Walks in Dual Graph with Dynamic Program dual graph \mathcal{A}^d $\mathcal{S} = \{S_1, S_2, S_3\}$ Partial solution: Walk W

start at b first edge in S₁

Computing Walks in Dual Graph with Dynamic Program acili Partial solution: dual graph \mathcal{A}^{d} $S = \{S_1, S_2, S_3\}$ Walk W S_2 S_3

start at b
first edge in S₁
cross exactly R ⊆ S

Computing Walks in Dual Graph with Dynamic Program acili Partial solution: dual graph \mathcal{A}^{d} $S = \{S_1, S_2, S_3\}$ Walk W S_2 S_3

- start at b
- first edge in S₁
- cross exactly $\mathbb{R} \subseteq \mathcal{S}$
- m edges long

Computing Walks in Dual Graph with Dynamic Program acili Partial solution: dual graph \mathcal{A}^{d} $S = \{S_1, S_2, S_3\}$ Walk W S_2 S_3

- start at b
- first edge in S₁
- cross exactly $\mathbb{R} \subseteq \mathcal{S}$
- m edges long
- end at v

Computing Walks in Dual Graph with Dynamic Program Weighted dual graph \mathcal{A}^d $\mathcal{S} = \{S_1, S_2, S_3\}$ Partial solution: Walk W

Representing W as single value: $f(W) = \prod_{i=1}^{m} w_i$

- start at b
- first edge in S₁
- cross exactly $\mathbb{R} \subseteq \mathcal{S}$
- m edges long
- end at v

Computing Walks in Dual Graph with Dynamic Program Weighted dual graph \mathcal{A}^d $\mathcal{S} = \{S_1, S_2, S_3\}$ Partial solution:

Representing W as single value: $f(W) = \prod_{i=1}^{m} w_i$

Set Ω of walks in \mathcal{A}^d

- start at b
- first edge in S₁
- cross exactly $\mathbb{R} \subseteq \mathcal{S}$
- m edges long
- end at v

There are multiple such walks!

Computing Walks in Dual Graph with Dynamic Program Partial solution: Weighted dual graph \mathcal{A}^{d}

 $S = \{S_1, S_2, S_3\}$ Walk W

Representing W as single value: $f(W) = \prod w_i$

Representing Ω as a single value: $T_b(R, m, v) = \sum f(W)$ Weo

Set Ω of walks in \mathcal{A}^d

- start at b
- first edge in S_1
- cross exactly $\mathbb{R} \subseteq \mathcal{S}$
- m edges long
- end at γ

There are multiple such walks!

Computing Walks in Dual Graph with Dynamic Program ac^{\parallel} Weighted dual graph \mathcal{A}^{d} Partial solution:

 $S = \{S_1, S_2, S_3\}$ Walk W

Representing W as single value: $f(W) = \prod_{i=1}^{m} w_i$

Representing Ω as a single value: $T_b(R, m, v) = \sum_{W \in \Omega} f(W)$

Set Ω of walks in \mathcal{A}^d

- start at b
- first edge in S₁
- cross exactly $\mathbb{R} \subseteq \mathcal{S}$
- m edges long
- end at v

We can tell if there is a simple walk in Ω (with high certainty)

Weighted dual graph \mathcal{A}^d

 $\mathcal{S} = \{S_1, S_2, S_3\}$ Partial s Walk W

Partial solution: Walk W

Representing W as single value: $f(W) = \prod_{i=1}^{m} w_i$

Representing Ω as a single value: $T_b(R, m, v) = \sum_{W \in \Omega} f(W)$

Set Ω of walks in \mathcal{A}^d

- start at b
- first edge in S₁
- cross exactly $\mathbb{R} \subseteq \mathcal{S}$
- m edges long
- end at v

Weighted dual graph \mathcal{A}^d

 $\mathcal{S} = \{S_1, S_2, S_3\}$ Walk W

Partial solution: Walk W

Representing W as single value: $f(W) = \prod_{i=1}^{m} w_i$

Representing Ω as a single value: $T_b(R, m, v) = \sum_{W \in \Omega} f(W)$

Set Ω of walks in \mathcal{A}^d

- start at b
- first edge in S₁
- cross exactly $\mathbb{R} \subseteq \mathcal{S}$
- m edges long
- end at v

 $f(\bigcirc) + f(\bigcirc)$

Weighted dual graph \mathcal{A}^d

Set Ω of walks in \mathcal{A}^d

- start at b
- first edge in S₁
- cross exactly $\mathbb{R} \subseteq \mathcal{S}$
- m edges long
- end at v

 $\mathcal{S} = \{S_1, S_2, S_3\}$ Partial solution: Walk W

Representing W as single value: $f(W) = \prod_{i=1}^{m} w_i$

Representing Ω as a single value: $T_b(R, m, v) = \sum_{W \in \Omega} f(W)$

 $f(\bigcirc) + f(\bigcirc) \stackrel{F}{=} 0$ [Björklund et al., '12]

Weighted dual graph \mathcal{A}^d

Set Ω of walks in \mathcal{A}^d

- start at b
- first edge in S₁
- cross exactly $\mathbb{R} \subseteq \mathcal{S}$
- m edges long
- end at v

 $\mathcal{S} = \{S_1, S_2, S_3\}$ Partial solution: Walk W

Representing W as single value: $f(W) = \prod_{i=1}^{m} w_i$

Representing Ω as a single value: $T_{b}(R, m, v) = \sum_{W \in \Omega} f(W)$ $f(\Box) + f(\Box) \stackrel{\text{F}}{=} 0$

 $\mathsf{T}_{\mathsf{b}}(\mathcal{S}, \mathsf{1}, \mathsf{b}) = \mathsf{0}$

[Björklund et al., '12]

Weighted dual graph \mathcal{A}^{d}

Set Ω of walks in \mathcal{A}^d

- start at b
- first edge in S_1
- cross exactly $\mathbb{R} \subseteq \mathcal{S}$
- m edges long
- end at γ

Partial solution: $S = \{S_1, S_2, S_3\}$ Walk W

Representing W as single value: $f(W) = \prod w_i$

Representing Ω as a single value: $T_b(R, m, v) = \sum f(W)$ $W \in \Omega$ $f(\bigcirc) + f(\bigcirc)$

 $T_{b}(\mathcal{S}, 2, b) = 0$

[Björklund et al., '12]

Weighted dual graph \mathcal{A}^d

Set Ω of walks in \mathcal{A}^d

- start at b
- first edge in S₁
- cross exactly $\mathbb{R} \subseteq \mathcal{S}$
- m edges long
- end at v

 $\mathcal{S} = \{S_1, S_2, S_3\}$ Partial solution: Walk W

Representing W as single value: $f(W) = \prod_{i=1}^{m} w_i$

Representing Ω as a single value: $T_{b}(R, m, v) = \sum_{W \in \Omega} f(W)$ $f(\Box) + f(\Box) \stackrel{\text{F}}{=} 0$

 $\mathsf{T}_{\mathbf{b}}(\mathcal{S},3,\mathbf{b})=0$

[Björklund et al., '12]

Weighted dual graph \mathcal{A}^{d}

Set Ω of walks in \mathcal{A}^d

- start at b
- first edge in S₁

• cross exactly
$$\mathbb{R} \subseteq \mathcal{S}$$

m edges long end at γ

 \exists simple walk of length m'

 $S = \{S_1, S_2, S_3\}$ Walk W

Partial solution:

Representing W as single value: $f(W) = \prod w_i$

Representing Ω as a single value: $T_b(R, m, v) = \sum f(W)$ $W \in \Omega$

> $f(\bigcirc) + f(\bigcirc)$ [Björklund et al., '12]

 $T_{\mathbf{b}}(\mathcal{S}, \mathbf{m}', \mathbf{b}) \neq 0$ for some \mathbf{m}'

Weighted dual graph \mathcal{A}^d

Set Ω of walks in \mathcal{A}^d

- start at b
- first edge in S₁
- cross exactly $\mathbb{R} \subseteq \mathcal{S}$
- m edges long
 end at v

∃ simple walk of length m′ $S = \{S_1, S_2, S_3\}$ Partial s Walk W

Partial solution: Walk W

Representing W as single value: $f(W) = \prod_{i=1}^{m} w_i$

Representing Ω as a single value: $T_b(R, m, v) = \sum_{W \in \Omega} f(W)$

> $f(\bigcirc) + f(\bigcirc) \stackrel{F}{=} 0$ [Björklund et al., '12]

 $T_b(\mathcal{S}, \mathfrak{m}', \mathfrak{b}) \neq 0$ for some \mathfrak{m}'

— One-sided Error
acılı

Computing $T_b(S, m', b)$ in a graph G = (V, E) via dynamic program

can be done in
$$\mathcal{O}\left(2^k \cdot k \cdot W \cdot |V(S_1)| \cdot |E||V|^2 \cdot \log\left(\frac{2|E|}{|V|}\right)\right)$$

adapted from [Björklund et al., '12]

acılı

Computing $T_b(\mathcal{S}, m', b)$ in a graph G = (V, E) via dynamic program

can be done in
$$\mathcal{O}\left(2^{k} \cdot k \cdot W \cdot |V(S_{1})| \cdot |E||V|^{2} \cdot \log\left(\frac{2|E|}{|V|}\right)\right)$$

adapted from [Björklund et al., '12]

acılıı

Computing $T_b(\mathcal{S}, \mathfrak{m}', \mathfrak{b})$ in a graph G = (V, E) via dynamic program can be done in $\mathcal{O}\left(2^{k} \cdot k \cdot W \cdot |V(S_{1})| \cdot |E||V|^{2} \cdot \log\left(\frac{2|E|}{|V|}\right)\right)$ adapted from [Björklund et al., '12] k := number of sets S_1, \ldots, S_k k := number of popular faces

acılıı

Computing $T_b(\mathcal{S}, \mathfrak{m}', \mathfrak{b})$ in a graph G = (V, E) via dynamic program can be done in $\mathcal{O}\left(2^{k} \cdot k \cdot W \cdot |V(S_{1})| \cdot |E||V|^{2} \cdot \log\left(\frac{2|E|}{|V|}\right)\right)$ adapted from [Björklund et al., '12] Error: $1 - \frac{I}{m^W}$ k := number of sets S_1, \ldots, S_k k := number of popular faces

acılı

Computing $T_b(S, m', b)$ in a graph G = (V, E) via dynamic program

acılı

Computing $T_{b}(S, m', b)$ in a graph G = (V, E) via dynamic program

Computing $T_b(S, m', b)$ in a graph G = (V, E) via dynamic program

Outline

acılı

Nonograms

How to remove popular faces

Resolution with one curve is NP-complete...

...but we can do it randomized in FPT time

Summary

Soeren Terziadis · Eliminating Popular Faces in Curve Arrangements

Deciding if **one curve** is sufficient is **NP-complete**...

Deciding if **one curve** is sufficient is **NP-complete**...

...but possible in **randomized FPT** with exponentially small **one-sided** error.

Deciding if **one curve** is sufficient is **NP-complete**...

...but possible in **randomized FPT** with exponentially small **one-sided** error.

Wrap-Up

Advanced nonograms can turned into basic nonograms by adding **additional resolution curves**.

Deciding if **one curve** is sufficient is **NP-complete**...

...but possible in **randomized FPT** with exponentially small **one-sided** error.

Open questions:

More curves?

Eliminating the error?

Intuition on the One-Sided Error

acılı

[11010001] +[11010001]

[00000000]

Intuition on the One-Sided Error

[00000000]

acilli

The building block curves

acılı

The building block curves

Inner part forces one of two options

19

Inner part forces one of two options

Inner part forces one of two options

The Edge Gadget

acılı