Eliminating Popular Faces in Curve Arrangements

 21.09.2023 * GD 2023 - Session 6
COMPLEXITY GROUP Soeren Terziadis

 I|S|T AUSTRIAZuzana Masárová

Phoebe de Nooijer Tamara Mchedlidze Maarten Löffler

Günter Rote

A project started at 16th European Research Week on Geometric Graphs (GGWeek) in Strobl (AT), 2019

Outline

Nonograms

Nonograms（Griddlers，判じ絵，Picross，．．．）

Nonograms（Griddlers，判じ絵，Picross，．．．）

	1	4 1 1	$\begin{aligned} & 3 \\ & 6 \end{aligned}$		7	3		4	1	2			2
11													
22													
5													
21221													
52													
31													
62													
151													
8													
24													

Nonograms（Griddlers，判じ絵，Picross，．．．）

First

Separated by at least one empty cell \square

Second
\square

Nonograms（Griddlers，判じ絵，Picross，．．．）

Nonograms（Griddlers，判じ絵，Picross，．．．）

Nonograms（Griddlers，判じ絵，Picross，．．．）

	1	4 1 1	3 6		7	$\begin{aligned} & 3 \\ & 6 \\ & \hline \end{aligned}$	4	1	2	3	2
11											
22											
5											
2121											
52											
31											
62											
151											
8											
24											

Nonograms（Griddlers，判じ絵，Picross，．．．）
$\mathbf{a c}^{\| \|}$

Popular with consumers．．．

Games
Books
Entertainment
．．．and scientists

```
[Batenburg & Kosters, '09]
    [Yu et al., '11]
    [Batenburg & Kosters, '12]
    [Berend et al., '14]
    [Chen & Lin, '19]
```

Nonograms（Griddlers，判じ絵，Picross，．．．）

Popular with consumers．．．

Entertainment
Curved image？
．．．and scientists
［Batenburg \＆Kosters，＇09］
［Yu et al．，＇11］
［Batenburg \＆Kosters，＇12］
［Berend et al．，＇14］
［Chen \＆Lin，＇19］

Nonograms（Griddlers，判じ絵，Picross，．．．）

Nonograms（Griddlers，判じ絵，Picross，．．．）

Nonograms（Griddlers，判じ絵，Picross，．．．）

Nonograms（Griddlers，判じ絵，Picross，．．．）

Nonograms（Griddlers，判じ絵，Picross，．．．）

Three in this column

Nonograms（Griddlers，判じ絵，Picross，．．．）

Three in this column

Nonograms（Griddlers，判じ絵，Picross，．．．）

Use a curve arrangement

Three to the right of this line
Three in this column

Nonograms（Griddlers，判じ絵，Picross，．．．）

Nonograms（Griddlers，判じ絵，Picross，．．．）

Nonograms（Griddlers，判じ絵，Picross，．．．）

Nonograms（Griddlers，判じ絵，Picross，．．．）

Nonograms（Griddlers，判じ絵，Picross，．．．）

Curved Nonograms

Given a shape...
...compute a curved nonogram

Good: Previous work for generating nonograms
[Parment, '15] [de Jong, '16]
[van de Kerkhof, '17] [van de Kerkhof et al., '19]

Curved Nonograms

Given a shape...
...compute a curved nonogram curved

Good: Previous work for generating nonograms [Parment, '15] [de Jong, '16] [van de Kerkhof, '17] [van de Kerkhof et al., '19]
Bad: Creates mostly advanced nonograms

Types of Nonograms

Types of Nonograms

Basic

Unique faces along curves

Types of Nonograms

Unique faces along curves

Types of Nonograms

Unique faces along curves

Repeated (popular) faces along curves

Types of Nonograms

Unique faces along curves

Repeated (popular) faces along curves

Types of Nonograms

Unique faces along curves

Repeated (popular) faces along curves

Types of Nonograms

Unique faces along curves

Advanced

Repeated (popular) faces along curves

Types of Nonograms

Basic

Unique faces along curves

Repeated (popular) faces along curves

Types of Nonograms
[van de Kerkhof et al., '19]

Basic

Unique faces along curves

Repeated (popular) faces

Types of Nonograms
[van de Kerkhof et al., '19]

Unique faces along curves

Repeated (popular) faces
Self intersections along curves

Outline

Nonograms

How to remove popular faces

Removing Popular Faces

Removing Popular Faces

Removing Popular Faces

Removing Popular Faces

Removing Popular Faces

[Brunck et al., '22]

Removing Popular Faces

[Brunck et al., '22]

[van de Kerkhof et al., '19]

Removing Popular Faces

We do not want to change existing geometry!

[Brunck et al., '22]

[van de Kerkhof et al., '19]

Removing Popular Faces

Removing Popular Faces

Removing Popular Faces

Removing Popular Faces

Removing Popular Faces

Can we do it with just 1 resolution curve?

Resolving a Single Face with One Curve

Resolution curves cross faces at most one time

Resolving a Single Face with One Curve

Resolution curves cross faces at most one time

Resolving a Single Face with One Curve

Resolution curves cross faces at most one time

Resolving a Single Face with One Curve

Resolution curves cross faces at most one time

Resolving a Single Face with One Curve

Resolution curves cross faces at most one time

Resolving a Single Face with One Curve

Resolution curves cross faces at most one time

Curves appear ≤ 2 times on the boundary of F

$$
\Longrightarrow|\mathrm{F}| \in \mathcal{O}(\mathrm{n})
$$

Resolving a Single Face with One Curve

Resolution curves cross faces at most one time

Curves appear ≤ 2 times on the boundary of F

$$
\Longrightarrow|\mathrm{F}| \in \mathcal{O}(\mathrm{n})
$$

Resolving a Single Face with One Curve

Resolution curves cross faces at most one time

Curves appear ≤ 2 times on the boundary of F

$$
\Longrightarrow|\mathrm{F}| \in \mathcal{O}(\mathrm{n})
$$

Resolving a Single Face with One Curve

Resolution curves cross faces at most one time

Curves appear ≤ 2 times on the boundary of F

$$
\Longrightarrow|\mathrm{F}| \in \mathcal{O}(\mathrm{n})
$$

$\mathcal{O}\left(n^{2}\right)$ possibilities to resolve F

Resolving a Single Face with One Curve

Resolution curves cross faces at most one time

Curves appear ≤ 2 times on the boundary of F

$$
\Longrightarrow|\mathrm{F}| \in \mathcal{O}(\mathrm{n})
$$

$\mathcal{O}\left(\mathrm{n}^{2}\right)$ possibilities to resolve F

Resolving a Single Face with One Curve

Resolution curves cross faces at most one time

Curves appear ≤ 2 times on the boundary of F

$$
\Longrightarrow|\mathrm{F}| \in \mathcal{O}(\mathrm{n})
$$

$\mathcal{O}\left(\mathrm{n}^{2}\right)$ possibilities to resolve F

Resolving a Single Face with One Curve

Resolution curves cross faces at most one time

Curves appear ≤ 2 times on the boundary of F

$$
\Longrightarrow|\mathrm{F}| \in \mathcal{O}(\mathrm{n})
$$

$\mathcal{O}\left(\mathrm{n}^{2}\right)$ possibilities to resolve F

Resolving a Single Face with One Curve

Resolution curves cross faces at most one time

Curves appear ≤ 2 times on the boundary of F

$$
\Longrightarrow|\mathrm{F}| \in \mathcal{O}(\mathrm{n})
$$

$\mathcal{O}\left(\mathrm{n}^{2}\right)$ possibilities to resolve F

Outline

Nonograms

How to remove popular faces

Resolution with one curve is NP-complete...

Adding a Single Curve is NP-complete

Given: Graph G, embedded in \mathbb{R}^{2}

Adding a Single Curve is NP-complete

Given: Graph G, embedded in \mathbb{R}^{2}

Adding a Single Curve is NP-complete

Given: Graph G, embedded in \mathbb{R}^{2}

Non-Crossing Eulerian Cycle
[Bent \& Manber, '87]

Adding a Single Curve is NP-complete

Given: Graph G, embedded in \mathbb{R}^{2}

Adding a Single Curve is NP-complete
Given: Graph G, embedded in \mathbb{R}^{2}
Curve arrangement \mathcal{A} (advanced)

Non-Crossing Eulerian Cycle

Adding a Single Curve is NP-complete
$\mathbf{a c}^{\||l|}$
Given: Graph G, embedded in \mathbb{R}^{2}
Curve arrangement \mathcal{A} (advanced)

Can be made basic with 1 resolution curve c

Non-Crossing Eulerian Cycle

Adding a Single Curve is NP-complete
$\mathbf{a c}^{\||l|}$
Given: Graph G, embedded in \mathbb{R}^{2}

Outline

Nonograms

How to remove popular faces

Resolution with one curve is NP-complete...

...but we can do it randomized in FPT time

Representing a Resolution Curve

Curve arrangement \mathcal{A}

Representing a Resolution Curve

Curve arrangement \mathcal{A}

Curve arrangement \mathcal{A}
Additional curve c

Curve arrangement \mathcal{A}
Additional curve c

Representing a Resolution Curve
Curve arrangement \mathcal{A}
Additional curve c

Representing a Resolution Curve

Curve arrangement \mathcal{A}
 Additional curve c

 Dual graph \mathcal{A}^{d} walk ℓC

Representing a Resolution Curve
Curve arrangement \mathcal{A}
Additional curve c

Dual graph \mathcal{A}^{d} closed walk ℓ

Representing a Resolution Curve

Curve arrangement \mathcal{A} Additional curve c
 Addional curve

Dual graph $\mathcal{A}^{\text {d }}$ closed walk ℓ

Representing a Resolution Curve
Curve arrangement \mathcal{A}
Additional curve c

Dual graph \mathcal{A}^{d}
closed walk ℓ

Representing a Resolution Curve
Curve arrangement \mathcal{A}
Additional curve c

Dual graph \mathcal{A}^{d} closed walk ℓ

Representing a Resolution Curve
Curve arrangement \mathcal{A}
Additional curve c

Dual graph \mathcal{A}^{d} closed walk ℓ

Representing a Resolution Curve
Curve arrangement \mathcal{A}
Additional curve c

Dual graph \mathcal{A}^{d} closed walk ℓ

Representing a Resolution Curve
Curve arrangement \mathcal{A}
Additional curve c

Dual graph \mathcal{A}^{d}
Simple closed walk ℓ

Computing Walks in Dual Graph with Dynamic Program

 dual graph $\mathcal{A}^{\text {d }}$

$$
\mathcal{S}=\left\{S_{1}, S_{2}, S_{3}\right\}
$$

Computing Walks in Dual Graph with Dynamic Program dual graph $\mathcal{A}^{\text {d }}$

$$
\mathcal{S}=\left\{S_{1}, S_{2}, S_{3}\right\}
$$

S_{3}

Computing Walks in Dual Graph with Dynamic Program

dual graph $\mathcal{A}^{\text {d }}$

$$
\mathcal{S}=\left\{S_{1}, S_{2}, S_{3}\right\}
$$

Partial solution: Walk W

S_{3}

Computing Walks in Dual Graph with Dynamic Program

dual graph $\mathcal{A}^{\text {d }}$

$$
\mathcal{S}=\left\{\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}\right\} \quad \text { Walk } \mathrm{W}
$$

S_{3}

- start at b

Computing Walks in Dual Graph with Dynamic Program

dual graph $\mathcal{A}^{\text {d }}$

$$
\mathcal{S}=\left\{S_{1}, S_{2}, S_{3}\right\}
$$

Partial solution: Walk W

- start at b
- first edge in S_{1}

Computing Walks in Dual Graph with Dynamic Program

$$
\begin{array}{cl}
R & \text { Partial solution: } \\
\mathcal{S}=\left\{S_{1}, S_{2}, S_{3}\right\}
\end{array} \begin{aligned}
& \text { Walk } W
\end{aligned}
$$

- start at b
- first edge in S_{1}
- cross exactly $R \subseteq \mathcal{S}$

Computing Walks in Dual Graph with Dynamic Program

$$
\begin{array}{cl}
R & \text { Partial solution: } \\
\mathcal{S}=\left\{S_{1}, S_{2}, S_{3}\right\} & \text { Walk } W
\end{array}
$$

- start at b
- first edge in S_{1}
- cross exactly $R \subseteq \mathcal{S}$
- m edges long

Computing Walks in Dual Graph with Dynamic Program

$$
\begin{array}{cl}
R & \text { Partial solution: } \\
\mathcal{S}=\left\{S_{1}, S_{2}, S_{3}\right\} & \text { Walk } W
\end{array}
$$

- start at b
- first edge in S_{1}
- cross exactly $R \subseteq \mathcal{S}$
- m edges long
- end at v

Computing Walks in Dual Graph with Dynamic Program ac|lı

Weighted dual graph $\mathcal{A}^{\text {d }}$

R Partial solution:

 $\mathcal{S}=\left\{S_{1}, S_{2}, S_{3}\right\} \quad$ Walk W Representing W as single value:$f(W)=\prod_{i=1}^{m} w_{i}$

- start at b
- first edge in S_{1}
- cross exactly $R \subseteq \mathcal{S}$
- m edges long
\square end at v

Weighted dual graph $\mathcal{A}^{\text {d }}$

R Partial solution:

 $\mathcal{S}=\left\{S_{1}, S_{2}, S_{3}\right\} \quad$ Walk WRepresenting W as single value:
$f(W)=\prod_{i=1}^{m} w_{i}$

Set Ω of walks in $\mathcal{A}^{\text {d }}$
start at b

- first edge in S_{1}

There are multiple such walks!

- cross exactly $R \subseteq \mathcal{S}$
- m edges long
\square end at v
 Weighted dual graph $\mathcal{A}^{\text {d }}$

$\mathrm{R} \quad$ Partial solution:

 $\mathcal{S}=\left\{S_{1}, S_{2}, S_{3}\right\} \quad$ Walk W
S S_{3}

 Representing W as single value:$$
f(W)=\prod_{i=1}^{m} w_{i}
$$

Representing Ω as a single value: $T_{b}(R, m, v)=\sum_{W \in \Omega} f(W)$

Set Ω of walks in $\mathcal{A}^{\text {d }}$

- start at b
- first edge in S_{1}

There are multiple such walks!

- cross exactly $R \subseteq \mathcal{S}$
- m edges long
\square end at v

Computing Walks in Dual Graph with Dynamic Program ac|lı Weighted dual graph $\mathcal{A}^{\text {d }}$

$\mathrm{R} \quad$ Partial solution:

 $\mathcal{S}=\left\{S_{1}, S_{2}, S_{3}\right\} \quad$ Walk W

 S_{3}

 Representing W as single value:$$
f(W)=\prod_{i=1}^{m} w_{i}
$$

Representing Ω as a single value: $T_{b}(R, \mathfrak{m}, v)=\sum_{W \in \Omega} f(W)$

Set Ω of walks in $\mathcal{A}^{\text {d }}$

- start at b
- first edge in S_{1}

We can tell if there is a simple walk in Ω (with high certainty)

- cross exactly $R \subseteq \mathcal{S}$
- m edges long
\square end at v

Computing Walks in Dual Graph with Dynamic Program ac|lı

Weighted dual graph $\mathcal{A}^{\text {d }}$

Set Ω of walks in \mathcal{A}^{d}

- start at b
- first edge in S_{1}
- cross exactly $R \subseteq \mathcal{S}$
- m edges long
- end at v

R Partial solution:

 $\mathcal{S}=\left\{S_{1}, S_{2}, S_{3}\right\} \quad$ Walk W Representing W as single value:$$
f(W)=\prod_{i=1}^{m} w_{i}
$$

Representing Ω as a single value: $T_{b}(R, m, v)=\sum_{W \in \Omega} f(W)$

Weighted dual graph $\mathcal{A}^{\text {d }}$

R

 $\mathcal{S}=\left\{S_{1}, S_{2}, S_{3}\right\} \quad$ Walk W Representing W as single value:$$
f(W)=\prod_{i=1}^{m} w_{i}
$$

Representing Ω as a single value: $T_{b}(R, m, v)=\sum_{W \in \Omega} f(W)$

Set Ω of walks in $\mathcal{A}^{\text {d }}$

- start at b
- first edge in S_{1}
- cross exactly $R \subseteq \mathcal{S}$
- m edges long
end at v

Computing Walks in Dual Graph with Dynamic Program ac|lı

Weighted dual graph $\mathcal{A}^{\text {d }}$

R

 $\mathcal{S}=\left\{S_{1}, S_{2}, S_{3}\right\} \quad$ Walk W Representing W as single value:$$
f(W)=\prod_{i=1}^{m} w_{i}
$$

Representing Ω as a single value: $T_{b}(R, m, v)=\sum_{W \in \Omega} f(W)$

Set Ω of walks in \mathcal{A}^{d}

- start at b
- first edge in S_{1}
- cross exactly $R \subseteq \mathcal{S}$
- m edges long
\square end at v

Computing Walks in Dual Graph with Dynamic Program ac

Weighted dual graph $\mathcal{A}^{\text {d }}$

Set Ω of walks in $\mathcal{A}^{\text {d }}$

- start at b
- first edge in S_{1}
- cross exactly $R \subseteq \mathcal{S}$
- m edges long
\square end at v

R

 $\mathcal{S}=\left\{S_{1}, S_{2}, S_{3}\right\} \quad$ Walk WRepresenting W as single value:

$$
f(W)=\prod_{i=1}^{m} w_{i}
$$

Representing Ω as a single value: $T_{b}(R, m, v)=\sum_{W \in \Omega} f(W)$

[Björklund et al., '12]

$$
\mathrm{T}_{\mathrm{b}}(\mathcal{S}, 1, \mathrm{~b})=0
$$

Computing Walks in Dual Graph with Dynamic Program ac

Weighted dual graph $\mathcal{A}^{\text {d }}$

Set Ω of walks in $\mathcal{A}^{\text {d }}$

- start at b
- first edge in S_{1}
- cross exactly $R \subseteq \mathcal{S}$
- m edges long
\square end at v

R

 $\mathcal{S}=\left\{S_{1}, S_{2}, S_{3}\right\} \quad$ Walk WRepresenting W as single value:

$$
f(W)=\prod_{i=1}^{m} w_{i}
$$

Representing Ω as a single value: $T_{b}(R, m, v)=\sum_{W \in \Omega} f(W)$

[Björklund et al., '12]

$$
\mathrm{T}_{\mathrm{b}}(\mathcal{S}, 2, \mathrm{~b})=0
$$

Computing Walks in Dual Graph with Dynamic Program ac

Weighted dual graph $\mathcal{A}^{\text {d }}$

Set Ω of walks in $\mathcal{A}^{\text {d }}$

- start at b
- first edge in S_{1}
- cross exactly $R \subseteq \mathcal{S}$
- m edges long
\square end at v

R

 $\mathcal{S}=\left\{S_{1}, S_{2}, S_{3}\right\} \quad$ Walk WRepresenting W as single value:

$$
f(W)=\prod_{i=1}^{m} w_{i}
$$

Representing Ω as a single value: $T_{b}(R, m, v)=\sum_{W \in \Omega} f(W)$

[Björklund et al., '12]

$$
\mathrm{T}_{\mathrm{b}}(\mathcal{S}, 3, \mathrm{~b})=0
$$

 Weighted dual graph $\mathcal{A}^{\text {d }}$
R Partial solution:

Set Ω of walks in \mathcal{A}^{d}

- start at b
- first edge in S_{1}
- cross exactly $R \subseteq \mathcal{S}$
- m edges long
\square end at v
\exists simple walk of length m^{\prime}

Computing Walks in Dual Graph with Dynamic Program ac Weighted dual graph $\mathcal{A}^{\text {d }}$

$$
\begin{array}{cl}
R & \text { Partial solution: } \\
\mathcal{S}=\left\{S_{1}, S_{2}, S_{3}\right\} & \text { Walk W }
\end{array}
$$

Set Ω of walks in $\mathcal{A}^{\text {d }}$

- start at b
- first edge in S_{1}
- cross exactly $R \subseteq \mathcal{S}$

$$
\begin{aligned}
& \mathcal{S}=\left\{S_{1}, S_{2}, S_{3}\right\} \\
& \text { Representing } \\
& f(W)=\prod_{i=1}^{m} w_{i}
\end{aligned}
$$

Representing W as single value:

Representing Ω as a single value: $T_{b}(R, \mathfrak{m}, v)=\sum_{W \in \Omega} f(W)$

- m edges long
end at v

\exists simple walk

Randomized FPT Runtime

Computing $\mathrm{T}_{\mathrm{b}}\left(\mathcal{S}, \mathrm{m}^{\prime}, \mathrm{b}\right)$ in a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ via dynamic program can be done in $\mathcal{O}\left(2^{\mathrm{k}} \cdot \mathrm{k} \cdot \mathrm{W} \cdot\left|\mathrm{V}\left(\mathrm{S}_{1}\right)\right| \cdot|\mathrm{E}||\mathrm{V}|^{2} \cdot \log \left(\frac{2 \mid \mathrm{EI}}{|\mathrm{V}|}\right)\right)$
adapted from [Björklund et al., '12]

Randomized FPT Runtime

Computing $\mathrm{T}_{\mathrm{b}}\left(\mathcal{S}, \mathrm{m}^{\prime}, \mathrm{b}\right)$ in a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ via dynamic program can be done in $\mathcal{O}\left(2^{\mathbf{k}} \cdot \cdot \mathrm{k} \cdot \mathrm{W} \cdot\left|\mathrm{V}\left(\mathrm{S}_{1}\right)\right| \cdot|\mathrm{E}||\mathrm{V}|^{2} \cdot \log \left(\frac{2|\mathrm{E}|}{|\mathrm{V}|}\right)\right)$
adapted from [Björklund et al., '12]

k := number of sets S_{1}, \ldots, S_{k}

Randomized FPT Runtime

Computing $\mathrm{T}_{\mathrm{b}}\left(\mathcal{S}, \mathrm{m}^{\prime}, \mathrm{b}\right)$ in a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ via dynamic program can be done in $\mathcal{O}\left(2^{\mathbf{k}} \cdot \mathbf{k} \cdot \mathrm{W} \cdot\left|\mathrm{V}\left(\mathrm{S}_{1}\right)\right| \cdot|\mathrm{E}||\mathrm{V}|^{2} \cdot \log \left(\frac{2|\mathrm{E}|}{|\mathrm{V}|}\right)\right)$

$k:=$ number of
sets S_{1}, \ldots, S_{k}

$\mathrm{k}:=$ number of
popular faces

Randomized FPT Runtime

Computing $\mathrm{T}_{\mathrm{b}}\left(\mathcal{S}, \mathrm{m}^{\prime}, \mathrm{b}\right)$ in a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ via dynamic program can be done in $\mathcal{O}\left(2^{\mathbf{k}} \cdot \mathbf{k} \cdot \mathbf{W} \cdot\left|\mathrm{V}\left(\mathrm{S}_{1}\right)\right| \cdot|\mathrm{E}||\mathrm{V}|^{2} \cdot \log \left(\frac{2 \mid \mathrm{EI}}{|\mathrm{V}|}\right)\right)$
$\mathrm{k}:=$ number of
popular faces

Randomized FPT Runtime

Computing $\mathrm{T}_{\mathrm{b}}\left(\mathcal{S}, \mathrm{m}^{\prime}, \mathrm{b}\right)$ in a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ via dynamic program can be done in $\mathcal{O}\left(2^{\mathbf{k}} \cdot \mathbf{k} \cdot \mathbf{W} \cdot\left|\mathrm{V}\left(\mathrm{S}_{1}\right)\right| \cdot|\mathrm{E}||\mathrm{V}|^{2} \cdot \log \left(\frac{2|\mathrm{E}|}{|\mathrm{V}|}\right)\right)$
$\mathrm{k}:=$ number of
popular faces

Randomized FPT Runtime

Computing $\mathrm{T}_{\mathrm{b}}\left(\mathcal{S}, \mathrm{m}^{\prime}, \mathrm{b}\right)$ in a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ via dynamic program can be done in $\mathcal{O}\left(2^{\mathbf{k}} \cdot \mathbf{k} \cdot \mathbf{W} \cdot\left|\mathbf{V}\left(\mathrm{S}_{1}\right)\right| \cdot|\mathrm{E}||\mathrm{V}|^{2} \cdot \log \left(\frac{2|\mathrm{E}|}{|\mathrm{V}|}\right)\right)$

Resolving all popular faces can be done in $\mathcal{O}\left(2^{\mathrm{k}}\right.$ poly $\left.(\mathrm{n})\right)$ with one sided Error
k := number of popular faces

Randomized FPT Runtime

Computing $\mathrm{T}_{\mathrm{b}}\left(\mathcal{S}, \mathrm{m}^{\prime}, \mathrm{b}\right)$ in a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ via dynamic program can be done in $\mathcal{O}\left(2^{\mathbf{k}} \cdot \mathbf{k} \cdot \mathbf{W} \cdot\left|\mathrm{V}\left(\mathrm{S}_{1}\right)\right| \cdot|\mathrm{E}||\mathrm{V}|^{2} \cdot \log \left(\frac{2|\mathrm{E}|}{|\mathrm{V}|}\right)\right)$

Resolving all popular faces can be done in $\mathcal{O}\left(2^{\mathrm{k}}\right.$ poly $\left.(\mathrm{n})\right)$ with one sided Error
$\mathrm{k}:=$ number of popular faces

Outline

Nonograms

How to remove popular faces

Resolution with one curve is NP-complete...

...but we can do it randomized in FPT time

Summary

Wrap-Up

Advanced nonograms can turned into basic nonograms by adding additional resolution curves.

Wrap-Up

Advanced nonograms can turned into basic nonograms by adding additional resolution curves.

Deciding if one curve is sufficient is NP-complete...

Advanced nonograms can turned into basic nonograms by adding additional resolution curves.

Deciding if one curve is sufficient is NP-complete...

...but possible in randomized FPT with exponentially small one-sided error.

Advanced nonograms can turned into basic nonograms by adding additional resolution curves.

Deciding if one curve is sufficient is NP-complete...

Advanced nonograms can turned into basic nonograms by adding additional resolution curves.

Deciding if one curve is sufficient is NP-complete...

...but possible in randomized FPT with exponentially small one-sided error.

Open questions:

- More curves?
- Eliminating the error?

Intuition on the One-Sided Error

[11010001]
$+[11010001]$

[00000000]

Intuition on the One-Sided Error

[11010001]
$+[11010001]$

[00000000]

$[11010001]$	$[11010001]$	$[10010101]$	$[10010101]$ $+[01000100]$
$+[10010101]$	$+[01000100]$	$+[01000100]$	
$[01000100]$	$\frac{[10010101]}{[11010001]}$	$\frac{[0000000]}{[1001]}$	

The Reduction

The building block curves

The Reduction

The building block curves

Vertex v

The Reduction

The building block curves

Vertex gadget $\mathcal{G}(v)$

The Reduction

The building block curves

Vertex gadget $\mathcal{G}(v)$

Vertex v

- Number of "openings" $=\operatorname{deg}(v)$

The Reduction

The building block curves
Vertex gadget $\mathcal{G}(v)$

■ Number of "openings" $=\operatorname{deg}(v)$

- Popular faces force resolution curve
 C

The Reduction

The building block curves
Vertex gadget $\mathcal{G}(v)$

Vertex v

- Number of "openings" $=\operatorname{deg}(v)$
- Popular faces force resolution curve
 C

The Reduction

The building block curves
Vertex gadget $\mathcal{G}(v)$

Vertex v

- Number of "openings" $=\operatorname{deg}(v)$
- Popular faces force resolution curve
 C

The Reduction

The building block curves
Vertex gadget $\mathcal{G}(v)$

Vertex v

- Number of "openings" $=\operatorname{deg}(v)$
- Popular faces force resolution curve

- Inner part forces one of two options

The Reduction

The building block curves
Vertex gadget $\mathcal{G}(v)$

Vertex v

- Number of "openings" $=\operatorname{deg}(v)$
- Popular faces force resolution curve

- Inner part forces one of two options

The Reduction

The building block curves
Vertex gadget $\mathcal{G}(v)$

Vertex v

- Number of "openings" $=\operatorname{deg}(v)$
- Popular faces force resolution curve

- Inner part forces one of two options

The Edge Gadget

