On the Parametrized Complexity of Bend-Minimum Orthogonal Planarity

E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani, <u>G. Ortali</u>

1

University of Perugia

Introduction

Orthogonal Drawings

- Vertices are placed at grid points. Edges are chains of horizontal and vertical segments.
- A *bend* is a point where a horizontal and a vertical segment of the same edge touch.
- An orthogonal representation is a class of orthogonal drawings having the same shape, i.e., relative position of the vertices and bends.
- We consider planar drawings/representations.

Bend-Minimization Problem

Input: A graph G and a positive integer *b*. **Output:** An orthogonal representation of G with at most b bends, if it exists.

• The problem is NP-hard (also for b=0). [Garg & Tamassia, SIAM J. Comp. 2001]

- FPT with respect *tw*, *b*, and *k* where:
 - *tw* is the treewidth
 - *b* is the number of bends
 - *k* is the number of vertices of degree 1 or 2 [*Di Giacomo, Liotta, Montecchiani, JCSS 2022*]

Our Contribution

Theorem

Let G be an n-vertex graph with k vertices of degree at most 2 and b be a positive integer. There is an algorithm that solves the Bend-Minimization Problem on G in $O(2^{(k+b)\log(k+b)})n^{O(1)}$ time.

The Algorithm

It is based on Dynamic Programming, and it performs a bottom-up visit of the rooted **SPQ*R-tree** of the graph, for each possible choice of the root.

The partial solutions are encoded by using the concept of **spirality**.

Main Ingredients

Decomposition of the graph into its triconnected components

- Q*- : Chain of edges
- P- : Parallel compositions
- S- : Series compositions
- R- : Anything else (the rigids)

Pertinent graph: induced subgraph

Skeleton: subcomponents are replaced with virtual edges

Poles: vertices of the component incident to the rest of the graph

The SPQ*R-tree of G rooted at the Q*-node (1,13,14,15)

An R-node v, its pertinent graph G_v , and its skeleton skel(v)

The virtual edge (5,8) corresponds to the P-node μ .

The virtual edge (3,8) corresponds to the rest of the graph

Spirality

Measure of how much a component is "rolled-up" in an orthogonal representation. Number of right turns minus left turns of every path connecting the poles.

The spirality of this component is 3

The spirality of this component is 1

Definition of Record

Definition of record

Every component v is associated with a spirality set Σ_{v} of pairs (σ_{v} , X_{v}), where:

- $\circ \sigma_{\nu}$ is a value of spirality that ν admits
- \circ X_v is a pair (b_v , H_v), where:
 - b_{v} is an integer in the interval [0,b]
 - H_{v} is an orthogonal representation of G_{v} with b_{v} bends and spirality σ_{v}

Lemma

Let v be a node of T and H be an orthogonal representation of G with b or less bends and suppose that G_v contains at most k degree-2 vertices. The spirality σ_v of the restriction H_v of H to G_v belongs to [-k - b - 2, k + b + 2].

In order to spiralize you need reflex angles. (bends and degree-2 vertices). <u>The number of possible spiralities is bounded by *k+b*.</u>

Definition of record

An orthogonal drawing with spirality 2.

The left path of the component contains 3 bends and 1 vertices of degree 2.

Definition of record

Every component v is associated with a spirality set $\Sigma_{v} = (\sigma_{v}, X_{v})$, where:

- $\circ~\sigma_{\nu}~$ is a value of spirality that ν admits
- \circ X_v is a pair (b_v , H_v), where:
 - b_v is an integer in the interval [0,b]
 - H_{v} is an orthogonal representation of G_{v} with b_{v} bends and spirality σ_{v}

Lemma

Let v be a node of T and H be an orthogonal representation of G with b or less bends and suppose that G_v contains at most k degree-2 vertices. The spirality σ_v of the restriction H_v of H to G_v belongs to [-k - b - 2, k + b + 2].

In order to spiralize you need reflex angles! (bends and degree-2 vertices). The number of possible spiralities is bounded by k and b.

 $|\Sigma_{v}| = f(k+b)$

The Algorithm - Biconnected case -

Q*-, P-, and S-Nodes

• If v is a Q*-, the spirality set Σ_v of v can be computed in O(k+b) time, since G_v has at most k vertices

• If v is a P-node or a S-node the spirality set Σ_v of vcan be computed in O(n(k+b)) time and $O(n(k+b)^2)$ time, respectively

[Di Battista, G., Liotta, G., Vargiu, F. SIAM J. Comput. 27(6), 1998]

R-Nodes

Key Observations

 In this case v has less than k+b children that are not Q*-nodes, since for each one of them at least 2 reflex angles in the outer face are needed.

We are performing a bottomup visit of a rooted SPQR-tree and we are visiting a node ν

 The fixed embedding algorithm, which is based on the network-flow model from Tamassia, can be easily extended with the variant that some subgraphs of G have a fixed drawing.

R-Nodes

- In order to test spirality σ_v we attach a chain in the external face of G_v and we fix its spirality to 4- σ_v .
- For the children of v that are not Q*-nodes we select all possible combinations of partial solutions and we fix the representation of each one with the corresponding representative representation.

$$\Sigma_{\mu} \rightarrow (\sigma_{\mu}, X_{\mu}) \rightarrow (b_{\mu}, H_{\mu})$$

• We perform the above computation for σ_{ν} and each combination of partial solutions in order to compute the set Σ_{ν} .

A Glimpse to the - General case -

The General Case

- A degree-2 vertex of a biconnected component (block) may correspond to higher degree vertices in the graph.
- We can associate it to the at least 1 degree-2 vertex or bend associated to the connected component on the opposite side.
- Observation:

The graph has k+b cutvertices and consequently at most 2k+b vertices of degree-2 vertices in any biconnected component.

The General Case

Indeg=2

Outdeg=1

В

- We extend the algorithm in order to handle potential angle constraints at the cutvertices.
- There are several types of angle constraints that we have to consider, depending on the indegree and outdegree of the cutvertex in the block B

В

Indeg=2

Outdeg=2

NO

YES

V

R

В

Indeg=3

Outdeg=1

В

Open Problems

Open Problems

- Can we reduce the number of our parameters from 2 to 1?
- Are there other interesting parameters for this problem?
- Are there other interesting upperbounds for the spirality of a component?

Thanks for your attention!