On the Parametrized Complexity of Bend-Minimum Orthogonal Planarity

E. Di Giacomo, W. Didimo, G. Liotta, F. Montecchiani, G. Ortali

University of Perugia

Introduction

Orthogonal Drawings

- Vertices are placed at grid points. Edges are chains of horizontal and vertical segments.
- A bend is a point where a horizontal and a vertical segment of the same edge touch.
- An orthogonal representation is a class of orthogonal drawings having the same shape, i.e., relative position of the vertices and bends.

- We consider planar drawings/representations.

Bend-Minimization Problem

Input: A graph G and a positive integer b.
Output: An orthogonal representation of G with at most b bends, if it exists.

- The problem is NP-hard (also for $b=0$).
[Garg \& Tamassia, SIAM J. Comp. 2001]
- FPT with respect $t w, b$, and k where:
- $t w$ is the treewidth
- b is the number of bends
- k is the number of vertices of degree 1 or 2 [Di Giacomo, Liotta, Montecchiani, JCSS 2022]

Our Contribution

Theorem

Let G be an n-vertex graph with k vertices of degree at most 2 and b be a positive integer. There is an algorithm that solves the Bend-Minimization Problem on G in $O\left(2^{(k+b) \log (k+b)}\right) \mathrm{n}^{O(1)}$ time.

The Algorithm

It is based on Dynamic Programming, and it performs a bottom-up visit of the rooted SPQ*R-tree of the graph, for each possible choice of the root.

The partial solutions are encoded by using the concept of spirality.

Main Ingredients

SPQ*R-tree

Decomposition of the graph into its triconnected components - Q*- : Chain of edges

- P- : Parallel compositions
- S- : Series compositions
- R- : Anything else (the rigids)

Pertinent graph: induced subgraph

Skeleton: subcomponents are replaced with virtual edges

Poles: vertices of the component incident to the rest of the graph

SPQ*R-tree

The SPQ*R-tree of G rooted at the Q*-node $^{*}(1,13,14,15)$

SPQ*R-tree

An R-node v, its pertinent graph G_{v}, and its skeleton $\operatorname{skel}(v)$

SPQ*R-tree

The virtual edge $(5,8)$ corresponds to the P-node μ.

SPQ*R-tree

The virtual edge $(3,8)$ corresponds to the rest of the graph

Spirality

Measure of how much a component is "rolled-up" in an orthogonal representation. Number of right turns minus left turns of every path connecting the poles.

The spirality of this component is 3

The spirality of this component is 1

Definition of
Record

Definition of record

Every component v is associated with a spirality set Σ_{v} of pairs $\left(\sigma_{v}, X_{v}\right)$, where:

- σ_{v} is a value of spirality that v admits
- X_{v} is a pair $\left(b_{v}, H_{v}\right)$, where:
- b_{v} is an integer in the interval $[0, b]$
- H_{v} is an orthogonal representation of G_{v} with b_{v} bends and spirality σ_{v}

Lemma

Let v be a node of T and H be an orthogonal representation of G with b or less bends and suppose that G_{v} contains at most k degree- 2 vertices. The spirality σ_{v} of the restriction H_{v} of H to G_{v} belongs to $[-k-b-2, k+b+2]$.

In order to spiralize you need reflex angles. (bends and degree-2 vertices).
The number of possible spiralities is bounded by $k+b$.

Definition of record

An orthogonal drawing with spirality 2.
The left path of the component contains 3 bends and 1 vertices of degree 2 .

Definition of record

Every component v is associated with a spirality set $\Sigma_{v}=\left(\sigma_{v}, X_{v}\right)$, where:

- σ_{v} is a value of spirality that v admits

$$
\left|\Sigma_{v}\right|=f(k+b)
$$

- X_{v} is a pair $\left(b_{v}, H_{v}\right)$, where:
- b_{v} is an integer in the interval $[0, b]$
- H_{v} is an orthogonal representation of G_{v} with b_{v} bends and spirality σ_{v}

Lemma

Let v be a node of T and H be an orthogonal representation of G with b or less bends and suppose that G_{v} contains at most k degree- 2 vertices. The spirality σ_{v} of the restriction H_{v} of H to G_{v} belongs to $[-k-b-2, k+b+2]$.

In order to spiralize you need reflex angles! (bends and degree-2 vertices).
The number of possible spiralities is bounded by k and b.

The Algorithm

- Biconnected case -

$\mathrm{Q}^{*}-$, P^{-}, and S-Nodes

- If v is a Q^{*}-, the spirality set Σ_{v} of v can be computed in $O(k+b)$ time, since G_{v} has at most k vertices

We are performing a bottomup visit of a rooted SPQ*R-tree and we are visiting a node v

- If v is a P-node or a S-node the spirality set Σ_{v} of v can be computed in $O(n(k+b))$ time and $O\left(n(k+b)^{2}\right)$ time, respectively
[Di Battista, G., Liotta, G., Vargiu,
F. SIAM J. Comput. 27(6), 1998]

R-Nodes

Key Observations

- In this case v has less than $k+b$ children that are not Q^{*}-nodes, since for each one of them at least 2 reflex angles in the outer face are needed.

We are performing a bottomup visit of a rooted SPQR-tree and we are visiting a node v

- The fixed embedding algorithm, which is based on the network-flow model from Tamassia, can be easily extended with the variant that some subgraphs of G have a fixed drawing.

R-Nodes

- In order to test spirality σ_{v} we attach a chain in the external face of G_{v} and we fix its spirality to $4-\sigma_{v}$.
- For the children of v that are not Q^{*}-nodes we select all possible combinations of partial solutions and we fix the representation of each one with the corresponding representative representation.

$$
\Sigma_{\mu} \rightarrow\left(\sigma_{\mu^{\prime}} X_{\mu}\right) \rightarrow\left(b_{\mu^{\prime}} \stackrel{\tilde{H_{\mu}}}{\mu}\right)
$$

- We perform the above computation for σ_{v} and each combination of partial solutions in order to compute the set Σ_{v}.

A Glimpse to the

- General case -

The General Case

- A degree-2 vertex of a biconnected component (block) may correspond to higher degree vertices in the graph.
- We can associate it to the at least 1 degree-2 vertex or bend associated to the connected component on the opposite side.
- Observation:

The graph has $k+b$ cutvertices and consequently at most $2 k+b$ vertices of degree- 2 vertices in any biconnected component.

The General Case

- We extend the algorithm in order to handle potential angle constraints at the cutvertices.

- We test these constraint using the Block-cutvertex tree, which is a decomposition of the graph into its blocks.

Open Problems

Open Problems

- Can we reduce the number of our parameters from 2 to 1 ?
- Are there other interesting parameters for this problem?
- Are there other interesting upperbounds for the spirality of a component?

Thanks for your attention!

