Fixed-Parameter Algorithms for Computing RAC Drawings of Graphs

Cornelius Brand · Robert Ganian · Sebastian Röder · Florian Schager 22.09.2023 · GD '23

- **Problem:** Crossings in non-planar graphs impair readability
- Empirical studies show that sharp angles are problematic [Huang et al. 2008]

- **Problem:** Crossings in non-planar graphs impair readability
- Empirical studies show that sharp angles are problematic [Huang et al. 2008]
- **Solution:** Allow crossings only at right angles

- **Problem:** Crossings in non-planar graphs impair readability
- Empirical studies show that sharp angles are problematic [Huang et al. 2008]
- **Solution:** Allow crossings only at right angles

RAC drawing of $K_{3,4}$

- **Problem:** Crossings in non-planar graphs impair readability
- Empirical studies show that sharp angles are problematic [Huang et al. 2008]
- **Solution:** Allow crossings only at right angles

RAC drawing of $K_{3,4}$ $K_{4,4}$ does not admit a RAC drawing

RAC DRAWING

Instance: A graph G

Question: Does G admit a straight-line RAC drawing?

RAC DRAWING

Instance: A graph G

Question: Does G admit a straight-line RAC drawing?

Theorem: Deciding whether a graph G admits a RAC drawing is NP-hard

[Argyriou et al. 2010]

β -Bend RAC DRAWING

Instance: A graph G, an integer $\beta \in \{0, 1, 2, 3\}$

Question: Does G admit a RAC drawing with β bends per edge?

 β -Bend RAC DRAWING

Instance: A graph G, an integer $\beta \in \{0, 1, 2, 3\}$

Question: Does G admit a RAC drawing with β bends per edge?

0-bends: $m \le 4n - 10$ [Didimo, Eades and Liotta 2011] **NP-hard**

acılı

 β -Bend RAC DRAWING

Instance: A graph G, an integer $\beta \in \{0, 1, 2, 3\}$

Question: Does G admit a RAC drawing with β bends per edge?

0-bends: $m \le 4n - 10$ [Didimo, Eades and Liotta 2011] **NP-hard**

acılı

 β -Bend RAC DRAWING

Instance: A graph G, an integer $\beta \in \{0, 1, 2, 3\}$

Question: Does G admit a RAC drawing with β bends per edge?

0-bends: $m \le 4n - 10$ [Didimo, Eades and Liotta 2011] **NP-hard**

acılı

 β -Bend RAC DRAWING

Instance: A graph G, an integer $\beta \in \{0, 1, 2, 3\}$

Question: Does G admit a RAC drawing with β bends per edge?

0-bends: $m \le 4n - 10$ [Didimo, Eades and Liotta 2011] **NP-hard**

acılı

 β -Bend RAC DRAWING

Instance: A graph G, an integer $\beta \in \{0, 1, 2, 3\}$

Question: Does G admit a RAC drawing with β bends per edge?

0-bends: $m \le 4n - 10$ [Didimo, Eades and Liotta 2011] **NP-hard** $\begin{array}{l} \mbox{1-bends:} \ m \leq 5.5n - \mathcal{O}(1) \\ \mbox{[Angelini, Bekos, Förster and Kaufmann 2018]} \\ \mbox{2-bends:} \ m \leq \overline{74.2n} \ 24n - 26 \ 20n - 22 \\ \mbox{[Arikushi, Fulek, Keszegh, Morić and Tóth 2012]} \\ \mbox{Complexity unknown} \end{array}$

3-bends: always drawable [Didimo, Eades and Liotta 2011] **linear time**

acılı

 β -Bend RAC DRAWING

Instance: A graph G, an integer $\beta \in \{0, 1, 2, 3\}$

Question: Does G admit a RAC drawing with β bends per edge?

0-bends: $m \le 4n - 10$ [Didimo, Eades and Liotta 2011] **NP-hard**

3-bends: always drawable [Didimo, Eades and Liotta 2011] **linear time**

Brand, Ganian, Röder, Schager \cdot Fixed-Parameter Algorithms for Computing RAC Drawings of Graphs

 β -Bend RAC drawing

Instance: A graph G, an integer $\beta \in \{0, 1, 2, 3\}$

Question: Does G admit a RAC drawing with β bends per edge?

BEND-RESTRICTED RAC DRAWING (BRAC)

Instance: A graph G, an integer $b \ge 0$, edge labelling $\beta : E \mapsto \{0, 1, 2, 3\}$.

Question: Does G admit a RAC drawing, with

at most b total bends and

at most $\beta(e)$ bends for each edge e?

Brand, Ganian, Röder, Schager · Fixed-Parameter Algorithms for Computing RAC Drawings of Graphs

Theorem. An instance (G, b, β) of BRAC can be solved in time $m^{\mathcal{O}(m^2)}$.

Brand, Ganian, Röder, Schager \cdot Fixed-Parameter Algorithms for Computing RAC Drawings of Graphs

Results

b-BEND β-RESTRICTED RAC DRAWING (BRAC) is fixed-parameter tractable when parameterized by

 $2^{\mathbf{fen}(G)^{\mathcal{O}(\mathbf{fen}(G))}}$ Feedback edge number fen(G) $+\mathcal{O}(|E(G)|)$ $2^{2^{\mathcal{O}(\mathbf{vcn}(G) + \log b)}}$ Vertex cover number $\mathbf{vcn}(G) + b$ $+\mathcal{O}(|E(G)|)$ $2^{b^{\mathcal{O}(\mathbf{nd}(G))}}$ Neighborhood diversity nd(G) + b $+\mathcal{O}(|E(G)|)$

Results

b-BEND β-RESTRICTED RAC DRAWING (BRAC) is *fixed-parameter tractable* when parameterized by

 $2^{\mathbf{fen}(G)^{\mathcal{O}(\mathbf{fen}(G))}}$ Feedback edge number fen(G) $+\mathcal{O}(|E(G)|)$ $2^{\mathcal{O}(\mathbf{vcn}(G)+\log b)}$ Vertex cover number $\mathbf{vcn}(G) + b$ $+\mathcal{O}(|E(G)|)$ Neighborhood diversity nd(G) + b $+\mathcal{O}(|E(G)|)$

Feedback Edge Number (FEN)

Definition (Feedback Edge Number). Let G = (V, E) be a graph. The feedback edge number fen(G) is the minimal number of edges, whose removal yields an acyclic graph.

Feedback Edge Number (FEN)

Definition (Feedback Edge Number). Let G = (V, E) be a graph. The feedback edge number fen(G) is the minimal number of edges, whose removal yields an acyclic graph.

Feedback Edge Number (FEN)

Definition (Feedback Edge Number). Let G = (V, E) be a graph. The feedback edge number fen(G) is the minimal number of edges, whose removal yields an acyclic graph.

Let G = (V, E) be a graph and $F \subset E$ its feedback edge set.

Let G = (V, E) be a graph and $F \subset E$ its feedback edge set.

Step 1: Iteratively remove vertices of degree one

Let G = (V, E) be a graph and $F \subset E$ its feedback edge set.

Step 1: Iteratively remove vertices of degree one

Now G' - F is a tree with at most $2 \cdot \mathbf{fen}(G)$ leaves

Let G = (V, E) be a graph and $F \subset E$ its feedback edge set.

Step 1: Iteratively remove vertices of degree one

Step 2: Partition G' - F into $\ell \leq 4 \cdot \mathbf{fen}(G)$ disjoint subpaths

- Let G = (V, E) be a graph and $F \subset E$ its feedback edge set.
 - **Step 1**: Iteratively remove vertices of degree one
 - Step 2: Partition G' F into $\ell \le 4 \cdot \mathbf{fen}(G)$ disjoint subpaths We allow the subpaths only to intersect at their respective endpoints

- Let G = (V, E) be a graph and $F \subset E$ its feedback edge set.
 - **Step 1**: Iteratively remove vertices of degree one
 - **Step 2**: Partition G' F into $\ell \leq 4 \cdot \mathbf{fen}(G)$ disjoint subpaths
 - **Step 3**: Order the paths P_1, \ldots, P_ℓ in increasing order of their length

- Let G = (V, E) be a graph and $F \subset E$ its feedback edge set.
 - **Step 1**: Iteratively remove vertices of degree one
 - **Step 2**: Partition G' F into $\ell \leq 4 \cdot \mathbf{fen}(G)$ disjoint subpaths
 - **Step 3**: Order the paths P_1, \ldots, P_ℓ in increasing order of their length Define $P_0 := F, p_i := |P_i|$

- Let G = (V, E) be a graph and $F \subset E$ its feedback edge set.
 - **Step 1**: Iteratively remove vertices of degree one
 - **Step 2**: Partition G' F into $\ell \leq 4 \cdot \mathbf{fen}(G)$ disjoint subpaths
 - Step 3: Order the paths P_1, \ldots, P_ℓ in increasing order of their length Define $P_0 := F, p_i := |P_i| \quad \exists i : p_i > 12\ell \cdot p_{i-1}$?

7

- Let G = (V, E) be a graph and $F \subset E$ its feedback edge set.
 - **Step 1**: Iteratively remove vertices of degree one
 - **Step 2**: Partition G' F into $\ell \leq 4 \cdot \mathbf{fen}(G)$ disjoint subpaths
 - Step 3: Order the paths P_1, \ldots, P_ℓ in increasing order of their length Define $P_0 := F, p_i := |P_i| \quad \exists i : p_i > 12\ell \cdot p_{i-1}$?

 $P_{0} P_{1} P_{2} P_{3} P_{4} P_{5} P_{6} P_{7} P_{8} P_{9} P_{10} P_{11}$

Brand, Ganian, Röder, Schager · Fixed-Parameter Algorithms for Computing RAC Drawings of Graphs

- Let G = (V, E) be a graph and $F \subset E$ its feedback edge set.
 - **Step 1**: Iteratively remove vertices of degree one
 - **Step 2**: Partition G' F into $\ell \leq 4 \cdot \mathbf{fen}(G)$ disjoint subpaths
 - Step 3: Order the paths P_1, \ldots, P_ℓ in increasing order of their length Define $P_0 := F, p_i := |P_i| \quad \exists i : p_i > 12\ell \cdot p_{i-1}$?

- Let G = (V, E) be a graph and $F \subset E$ its feedback edge set.
 - **Step 1**: Iteratively remove vertices of degree one
 - **Step 2**: Partition G' F into $\ell \leq 4 \cdot \mathbf{fen}(G)$ disjoint subpaths
 - Step 3: Order the paths P_1, \ldots, P_ℓ in increasing order of their length Define $P_0 := F, p_i := |P_i| \quad \exists i : p_i > 12\ell \cdot p_{i-1}$?

- Let G = (V, E) be a graph and $F \subset E$ its feedback edge set.
 - **Step 1**: Iteratively remove vertices of degree one
 - **Step 2**: Partition G' F into $\ell \leq 4 \cdot \mathbf{fen}(G)$ disjoint subpaths
 - Step 3: Order the paths P_1, \ldots, P_ℓ in increasing order of their length Define $P_0 := F, p_i := |P_i| \quad \exists i : p_i > 12\ell \cdot p_{i-1}$?

Let i_0 be the smallest i such that $p_{i_0+1} > 12\ell \cdot p_{i_0}$.

E Every long path $P_j \in \mathcal{P}_{\text{long}}$ is crossed at most: $4\ell \cdot p_{i_0}$ times

Let i_0 be the smallest i such that $p_{i_0+1} > 12\ell \cdot p_{i_0}$.

Every long path P_j ∈ P_{long} is crossed at most: 4ℓ · p_{i0} times Each edge in G_{short} has at most 3 bends At most 4 ∑ⁱ⁰_{i=0} p_i crossings involving edges from G_{short} Total: 4 ∑ⁱ⁰_{i=0} p_i + (ℓ - i₀) ≤ 4ℓ · p_{i0} crossings

- Let i_0 be the smallest i such that $p_{i_0+1} > 12\ell \cdot p_{i_0}$.
 - **E** Every long path $P_j \in \mathcal{P}_{\text{long}}$ is crossed at most: $4\ell \cdot p_{i_0}$ times

Each crossing requires three vertices
 Since |P_j| > 12l · p_{i0}, each long path has enough vertices

- Let i_0 be the smallest i such that $p_{i_0+1} > 12\ell \cdot p_{i_0}$.
 - **E** Every long path $P_j \in \mathcal{P}_{\text{long}}$ is crossed at most: $4\ell \cdot p_{i_0}$ times

Each crossing requires three vertices
 Since |P_j| > 12l · p_{i_0}, each long path has enough vertices

 $|G_{\text{short}}| = \sum_{i=0}^{i_0} p_i \le \sum_{i=0}^{i_0} p_0 (12\ell)^i = \text{fen}(G)^{\mathcal{O}(\text{fen}(G))}$

- Let i_0 be the smallest i such that $p_{i_0+1} > 12\ell \cdot p_{i_0}$.
 - **Every long path** $P_j \in \mathcal{P}_{\text{long}}$ is crossed at most: $4\ell \cdot p_{i_0}$ times

Each crossing requires three vertices
 Since |P_j| > 12l · p_{i_0}, each long path has enough vertices

 $|G_{\text{short}}| = \sum_{i=0}^{i_0} p_i \le \sum_{i=0}^{i_0} p_0 (12\ell)^i = \mathbf{fen}(G)^{\mathcal{O}(\mathbf{fen}(G))}$

Results

b-BEND β-RESTRICTED RAC DRAWING (BRAC) is fixed-parameter tractable when parameterized by

Definition. Vertex cover: min. set $C \subseteq V$ s.t. $\forall e \in E$: e incident to $v \in C$

acili

Definition. Vertex cover: min. set $C \subseteq V$ s.t. $\forall e \in E$: e incident to $v \in C$

$\bullet k = \mathbf{vcn}(G) = |C|$

acili

Definition. Vertex cover: min. set $C \subseteq V$ s.t. $\forall e \in E$: e incident to $v \in C$

Type: Set of vertices in G - C with the same neighbourhood

acilli

Definition. Vertex cover: min. set $C \subseteq V$ s.t. $\forall e \in E$: e incident to $v \in C$

Type: Set of vertices in G - C with the same neighbourhood
 At most 2^k types

acilli

11

Definition. Vertex cover: min. set $C \subseteq V$ s.t. $\forall e \in E$: e incident to $v \in C$

- Type: Set of vertices in G C with the same neighbourhood
 At most 2^k types
- **Idea:** limit the number of vertices in each type by a function of $\mathbf{vcn}(G) + b$

acılı

• Distinguish types by number of neighbours $|T_i|$

• Distinguish types by number of neighbours $|T_i|$

• Distinguish types by number of neighbours $|T_i|$

• Distinguish types by number of neighbours $|T_i|$

• Distinguish types by number of neighbours $|T_i|$

• Distinguish types by number of neighbours $|T_i|$

$$\Rightarrow$$
 can remove all types with $|T_i| = 1$

• Distinguish types by number of neighbours $|T_i|$

Case 1: $|T_i| = 1$

 \Rightarrow keep 0

• Distinguish types by number of neighbours $|T_i|$

Case 1: $|T_i| = 1$

$$\Rightarrow$$
 keep 0

Case 2: $|T_i| \ge 3$

• Distinguish types by number of neighbours $|T_i|$

Case 1: $|T_i| = 1$

 \Rightarrow keep 0

Case 2: $|T_i| \ge 3$

- Distinguish types by number of neighbours $|T_i|$
- **Case 1**: $|T_i| = 1$

Case 2: $|T_i| \ge 3$

- Distinguish types by number of neighbours $|T_i|$
- **Case 1**: $|T_i| = 1$

- Distinguish types by number of neighbours $|T_i|$
- **Case 1**: $|T_i| = 1$

Distinguish types by number of neighbours $|T_i|$

Case 1: $|T_i| = 1$

 \Rightarrow keep 0

Case 2: $|T_i| \ge 3$

 \Rightarrow keep 5 + b

• Distinguish types by number of neighbours $|T_i|$

Case 1: $|T_i| = 1$

 \Rightarrow keep 5 + b

 \Rightarrow keep 0

- **Case 2**: $|T_i| \ge 3$
- **Case 3**: $|T_i| = 2$

acılı

- Distinguish types by number of neighbours $|T_i|$
- **Case 1**: $|T_i| = 1$

 \Rightarrow keep 0

 \Rightarrow keep 5 + b

- **Case 2**: $|T_i| \ge 3$
- **Case 3**: $|T_i| = 2$

Case 3: $|T_i| = 2$

Lemma. At most 4 vertices of a type T with |T| = 2 can be involved in a crossing within T.

Case 3: $|T_i| = 2$

Lemma. At most 4 vertices of a type T with |T| = 2 can be involved in a crossing within T.

acılı

 \blacksquare All other vertices of T_i form a hierarchy

acılı

• All other vertices of T_i form a hierarchy

acılı

• All other vertices of T_i form a hierarchy

acılı

 \blacksquare All other vertices of T_i form a hierarchy

acılı

 \blacksquare All other vertices of T_i form a hierarchy

 \blacksquare All other vertices of T_i form a hierarchy

acılı

acılı

 \blacksquare All other vertices of T_i form a hierarchy

acılı

 \blacksquare All other vertices of T_i form a hierarchy

acili

 \blacksquare All other vertices of T_i form a hierarchy

Crossing-free edge guaranteed with > 3k members

acılı

 \blacksquare All other vertices of T_i form a hierarchy

Crossing-free edge guaranteed with > 3k members

acılı

 \blacksquare All other vertices of T_i form a hierarchy

Crossing-free edge guaranteed with > 3k members

acili

 \blacksquare All other vertices of T_i form a hierarchy

Crossing-free edge guaranteed with > 3k members

acili

 \blacksquare All other vertices of T_i form a hierarchy

Crossing-free edge guaranteed with > 3k (+b) members bends

acili

 \blacksquare All other vertices of T_i form a hierarchy

Crossing-free edge guaranteed with > 3k (+b) members bends

acılı

 \blacksquare All other vertices of T_i form a hierarchy

acılı

- Distinguish types by cardinality $|T_i|$
- Case 1: $|T_i| = 1$ Case 2: $|T_i| \ge 3$ Case 3: $|T_i| = 2$ keep 3k + b

FPT via $\mathbf{vcn}(G) + b$	b acılı
Distinguish types by cardinality $ T_i $	
Case 1 : $ T_i = 1$	\Rightarrow keep 0
Case 2 : $ T_i \ge 3$	\Rightarrow keep $5 + b$
Case 3 : $ T_i = 2$	\Rightarrow keep $3k + b$

Total: |V| =

Distinguish types by cardinality $ T_i $	
Case 1 : $ T_i = 1$	\Rightarrow keep 0
Case 2 : $ T_i \ge 3$	\Rightarrow keep $5 + b$
Case 3 : $ T_i = 2$	\Rightarrow keep $3k + b$

Total: |V| = k $\mathbf{vcn}(G)$

FPT via $\mathbf{vcn}(G) + b$

acilli

- **Case 1**: $|T_i| = 1$
- **Case 2**: $|T_i| \ge 3$
- **Case 3**: $|T_i| = 2$

Distinguish types by cardinality $|T_i|$

 \Rightarrow keep 0

acili

$$\Rightarrow$$
 keep $3k + b$

 \Rightarrow keep 5 + b

FPT via $\mathbf{vcn}(G) + b$

• Distinguish types by cardinality $|T_i|$

- **Case 1**: $|T_i| = 1$
- **Case 2**: $|T_i| \ge 3$ \Rightarrow keep 5 + b
- **Case 3**: $|T_i| = 2$

Total:
$$|V| = \begin{bmatrix} k \\ vcn(G) \end{bmatrix} + k \cdot \begin{bmatrix} 0 \\ Case 1 \end{bmatrix} + 2^k \cdot \begin{bmatrix} (5+b) \\ Case 2 \end{bmatrix}$$

$$\Rightarrow$$
 keep 0

$$\Rightarrow \text{keep } 3k + b$$

• Distinguish types by cardinality $|T_i|$

Case 1: $|T_i| = 1$

Case 2: $|T_i| \ge 3$ \Rightarrow keep 5 + b

Case 3: $|T_i| = 2$ \Rightarrow keep 3k + b

Total:
$$|V| = \begin{bmatrix} k \\ vcn(G) \end{bmatrix} + k \cdot \begin{bmatrix} 0 \\ Case 1 \end{bmatrix} + 2^k \cdot \begin{bmatrix} (5+b) \\ Case 2 \end{bmatrix} + k^2 \cdot \begin{bmatrix} (3k+b) \\ Case 3 \end{bmatrix}$$

 \Rightarrow keep 0

Total: $|V| = \begin{bmatrix} k \\ vcn(G) \end{bmatrix} + k \cdot \begin{bmatrix} 0 \\ Case 1 \end{bmatrix} + 2^k \cdot \begin{bmatrix} (5+b) \\ Case 2 \end{bmatrix} + k^2 \cdot \begin{bmatrix} (3k+b) \\ Case 3 \end{bmatrix} = \mathcal{O}(b \cdot 2^k)$

Case 3: $|T_i| = 2$ \Rightarrow keep 3k + b

- **Case 2**: $|T_i| \ge 3$ \Rightarrow keep 5 + b
- Distinguish types by cardinality $|T_i|$

FPT via $\mathbf{vcn}(G) + b$

Case 1: $|T_i| = 1$

acilli

 \Rightarrow keep 0

FPT via
$$\mathbf{vcn}(G) + b$$

Distinguish types by cardinality $|T_i|$

■ Case 1: $|T_i| = 1$ ⇒ keep 0

- **Case 2**: $|T_i| \ge 3 \Rightarrow \text{keep } 5 + b$
- **Case 3**: $|T_i| = 2$ \Rightarrow keep 3k + b

Total:
$$|V| = \begin{bmatrix} k \\ vcn(G) \end{bmatrix} + k \cdot \begin{bmatrix} 0 \\ Case 1 \end{bmatrix} + 2^k \cdot \begin{bmatrix} (5+b) \\ Case 2 \end{bmatrix} + k^2 \cdot \begin{bmatrix} (3k+b) \\ Case 3 \end{bmatrix} = \mathcal{O}(b \cdot 2^k)$$

Solve time $m^{\mathcal{O}(m^2)}$

Distinguish types by cardinality
$$|T_i|$$

FPT via $\mathbf{vcn}(G) + b$

Case 1:
$$|T_i| = 1$$
 \Rightarrow keep 0

$$Case 2: |T_i| \ge 3$$
 \Rightarrow keep $5 + b$

Case 3:
$$|T_i| = 2$$
 \Rightarrow keep $3k + b$

Total:
$$|V| = \begin{bmatrix} k \\ vcn(G) \end{bmatrix} + k \cdot \begin{bmatrix} 0 \\ Case 1 \end{bmatrix} + 2^k \cdot \begin{bmatrix} (5+b) \\ Case 2 \end{bmatrix} + k^2 \cdot \begin{bmatrix} (3k+b) \\ Case 3 \end{bmatrix} = \mathcal{O}(b \cdot 2^k)$$
Solve time $m^{\mathcal{O}(m^2)}$ Kernel size $\mathcal{O}(b \cdot 2^k)$

\blacksquare Distinguish types by cardinality $|T_i|$

Case 1: $|T_i| = 1$

FPT via $\mathbf{vcn}(G) + b$

- **Case 2**: $|T_i| \ge 3 \Rightarrow \text{keep } 5 + b$
- **Case 3**: $|T_i| = 2$ \Rightarrow keep 3k + b

Total:
$$|V| = \begin{bmatrix} k \\ vcn(G) \end{bmatrix} + k \cdot \begin{bmatrix} 0 \\ Case 1 \end{bmatrix} + 2^k \cdot \begin{bmatrix} (5+b) \\ Case 2 \end{bmatrix} + k^2 \cdot \begin{bmatrix} (3k+b) \\ Case 3 \end{bmatrix} = \mathcal{O}(b \cdot 2^k)$$
Solve time $m^{\mathcal{O}(m^2)}$ Kernel size $\mathcal{O}(b \cdot 2^k)$ Kernel time $\mathcal{O}(|E(G)|)$

 \Rightarrow keep 0

Distinguish types by cardinality $|T_i|$

Case 1:
$$|T_i| = 1$$
 \Rightarrow keep 0

Case 2:
$$|T_i| \ge 3 \Rightarrow \text{keep } 5 + b$$

Case 3:
$$|T_i| = 2$$
 \Rightarrow keep $3k + b$

Total:
$$|V| = k + k \cdot \begin{bmatrix} 0 \\ Case 1 \end{bmatrix} + 2^k \cdot \begin{bmatrix} (5+b) \\ Case 2 \end{bmatrix} + k^2 \cdot \begin{bmatrix} (3k+b) \\ Case 3 \end{bmatrix} = \mathcal{O}(b \cdot 2^k)$$

Solve time $m^{\mathcal{O}(m^2)}$ Kernel size $\mathcal{O}(b \cdot 2^k)$ Kernel time $\mathcal{O}(|E(G)|)$
Total $2^{2^{\mathcal{O}(k+\log b)}} + \mathcal{O}(|E(G)|)$

Brand, Ganian, Röder, Schager \cdot Fixed-Parameter Algorithms for Computing RAC Drawings of Graphs

acili

Results

b-BEND β-RESTRICTED RAC DRAWING (BRAC) is fixed-parameter tractable when parameterized by

Definition. Neighborhood diversity nd(G): min k s.t. \exists k-partition neighborhood equivalent for each vertex in same partition

 $\blacksquare \mathbf{nd}(G) \leq f(\mathbf{vcn}(G))$
Neighbourhood Diversity

Definition. Neighborhood diversity nd(G): min k s.t. \exists k-partition neighborhood equivalent for each vertex in same partition

 $\blacksquare \mathbf{nd}(G) \le f(\mathbf{vcn}(G))$

Lemma. G b-bend RAC drawable \Rightarrow vcn $(G) \le 5 \cdot$ nd(G) + b.

Neighbourhood Diversity

Definition. Neighborhood diversity nd(G): min k s.t. \exists k-partition neighborhood equivalent for each vertex in same partition

 $\blacksquare \ \mathbf{nd}(G) \le f(\mathbf{vcn}(G))$

Lemma. G b-bend RAC drawable \Rightarrow **vcn**(G) $\leq 5 \cdot$ **nd**(G) + b.

Implies BRAC is FPT by $\mathbf{nd}(G)$

Results

b-BEND β-RESTRICTED RAC DRAWING (BRAC) is fixed-parameter tractable when parameterized by

 $2^{\mathbf{fen}(G)^{\mathcal{O}(\mathbf{fen}(G))}}$ Feedback edge number fen(G) $+\mathcal{O}(|E(G)|)$ $2^{2^{\mathcal{O}(\mathbf{vcn}(G) + \log b)}}$ Vertex cover number $\mathbf{vcn}(G) + b$ $+\mathcal{O}(|E(G)|)$ $2^{b^{\mathcal{O}(\mathbf{nd}(G))}}$ Neighborhood diversity nd(G) + b $+\mathcal{O}(|E(G)|)$

acılı

Also FPT by $\mathbf{vcn}(G)$ alone? (instead of $\mathbf{vcn}(G) + b$)

Also FPT by $\mathbf{vcn}(G)$ alone? (instead of $\mathbf{vcn}(G) + b$)

Also FPT by $\mathbf{vcn}(G)$ alone? (instead of $\mathbf{vcn}(G) + b$)

Also FPT by $\mathbf{vcn}(G)$ alone? (instead of $\mathbf{vcn}(G) + b$)

Also FPT by $\mathbf{vcn}(G)$ alone? (instead of $\mathbf{vcn}(G) + b$)

Also FPT by $\mathbf{vcn}(G)$ alone? (instead of $\mathbf{vcn}(G) + b$)

Obtain smaller (polynomially sized) kernels

Brand, Ganian, Röder, Schager \cdot Fixed-Parameter Algorithms for Computing RAC Drawings of Graphs