Fixed-Parameter Algorithms for Computing RAC Drawings of Graphs

Cornelius Brand • Robert Ganian • Sebastian Röder • Florian Schager 22.09.2023 • GD '23

Right-angle crossing (RAC) drawings

- Problem: Crossings in non-planar graphs impair readability
- Empirical studies show that sharp angles are problematic [Huang et al. 2008]

Right-angle crossing (RAC) drawings

- Problem: Crossings in non-planar graphs impair readability
- Empirical studies show that sharp angles are problematic [Huang et al. 2008]
- Solution: Allow crossings only at right angles

Right-angle crossing (RAC) drawings

- Problem: Crossings in non-planar graphs impair readability
- Empirical studies show that sharp angles are problematic [Huang et al. 2008]
- Solution: Allow crossings only at right angles

Example:

RAC drawing of $K_{3,4}$

Right-angle crossing (RAC) drawings

- Problem: Crossings in non-planar graphs impair readability
- Empirical studies show that sharp angles are problematic [Huang et al. 2008]
- Solution: Allow crossings only at right angles

Example:

RAC drawing of $K_{3,4}$

$K_{4,4}$ does not admit a RAC drawing

Generalized RAC drawings

RAC DRAWING

Instance: A graph G
Question: Does G admit a straight-line RAC drawing?

Generalized RAC drawings

RAC DRAWING

Instance: A graph G
Question: Does G admit a straight-line RAC drawing?

Theorem: Deciding whether a graph G admits a RAC drawing is NP-hard
[Argyriou et al. 2010]

Generalized RAC drawings

β-Bend RAC drawing
Instance: A graph G, an integer $\beta \in\{0,1,2,3\}$
Question: Does G admit a RAC drawing with β bends per edge?

Generalized RAC drawings

β-Bend RAC drawing
Instance: A graph G, an integer $\beta \in\{0,1,2,3\}$
Question: Does G admit a RAC drawing with β bends per edge?

0-bends: $m \leq 4 n-10$
[Didimo, Eades and Liotta 2011]
NP-hard

Generalized RAC drawings

β-Bend RAC DRawing
Instance: A graph G, an integer $\beta \in\{0,1,2,3\}$
Question: Does G admit a RAC drawing with β bends per edge?

0-bends: $m \leq 4 n-10$
[Didimo, Eades and Liotta 2011]
NP-hard

1-bends: $m \leq 5.5 n-\mathcal{O}(1)$
[Angelini, Bekos, Förster and Kaufmann 2018]
2-bends: $m \leq 74.2 n$
[Arikushi, Fulek, Keszegh, Morić and Tóth 2012]
Complexity unknown

Generalized RAC drawings

β-Bend RAC DRawing
Instance: A graph G, an integer $\beta \in\{0,1,2,3\}$
Question: Does G admit a RAC drawing with β bends per edge?

0-bends: $m \leq 4 n-10$
[Didimo, Eades and Liotta 2011]
NP-hard

1-bends: $m \leq 5.5 n-\mathcal{O}(1)$
[Angelini, Bekos, Förster and Kaufmann 2018]
2-bends: $m \leq 74.2 n-24 n-26$
[Arikushi, Fulek, Keszegh, Morić and Tóth 2012]
Complexity unknown

Generalized RAC drawings

β-Bend RAC drawing
Instance: A graph G, an integer $\beta \in\{0,1,2,3\}$
Question: Does G admit a RAC drawing with β bends per edge?

0-bends: $m \leq 4 n-10$
[Didimo, Eades and Liotta 2011]
NP-hard

1-bends: $m \leq 5.5 n-\mathcal{O}(1)$
[Angelini, Bekos, Förster and Kaufmann 2018]
2-bends: $m \leq 74.2 n 24-2620 n-22$
[Arikushi, Fulek, Keszegh, Morić and Tóth 2012]
Complexity unknown

Generalized RAC drawings

β-Bend RAC drawing
Instance: A graph G, an integer $\beta \in\{0,1,2,3\}$
Question: Does G admit a RAC drawing with β bends per edge?

0-bends: $m \leq 4 n-10$
[Didimo, Eades and Liotta 2011]
NP-hard

3-bends: always drawable
[Didimo, Eades and Liotta 2011]
linear time

1-bends: $m \leq 5.5 n-\mathcal{O}(1)$
[Angelini, Bekos, Förster and Kaufmann 2018]
2-bends: $m \leq 74.2 n 24-2620 n-22$ [Arikushi, Fulek, Keszegh, Morić and Tóth 2012] Complexity unknown

Generalized RAC drawings

β-Bend RAC drawing
Instance: A graph G, an integer $\beta \in\{0,1,2,3\}$
Question: Does G admit a RAC drawing with β bends per edge?

0-bends: $m \leq 4 n-10$
[Didimo, Eades and Liotta 2011]
NP-hard

3-bends: always drawable
[Didimo, Eades and Liotta 2011] linear time

1-bends: $m \leq 5.5 n-\mathcal{O}(1)$
[Angelini, Bekos, Förster and Kaufmann 2018]
2-bends: $m \leq 74.2 n 24 n-2620 n-22$ [Arikushi, Fulek, Keszegh, Morić and Tóth 2012]

Complexity unknown

Generalized RAC drawings

β-Bend RAC DRawing
Instance: A graph G, an integer $\beta \in\{0,1,2,3\}$
Question: Does G admit a RAC drawing with β bends per edge?

Bend-Restricted RAC Drawing (BRAC)
Instance: A graph G, an integer $b \geq 0$, edge labelling $\beta: E \mapsto\{0,1,2,3\}$.
Question: Does G admit a RAC drawing, with

- at most b total bends and
\square at most $\beta(e)$ bends for each edge e ?

Side note: Kernelization

Side note: Kernelization

|I|

Side note: Kernelization

|I|

Side note: Kernelization

Theorem. An instance (G, b, β) of BRAC can be solved in time $m^{\mathcal{O}\left(m^{2}\right)}$.

Results

- b-Bend β-Restricted RAC Drawing (BRAC) is
fixed-parameter tractable when parameterized by

Feedback edge number fen (G)

$$
\begin{aligned}
& 2^{\mathrm{fen}(G)^{\mathcal{O}(\operatorname{fen}(G))}} \\
& +\mathcal{O}(|E(G)|)
\end{aligned}
$$

$$
\begin{aligned}
& 2^{2^{\mathcal{O}(\operatorname{ven}(G)+\log b)}} \\
& +\mathcal{O}(|E(G)|)
\end{aligned}
$$

$\begin{array}{ll}\text { Neighborhood diversity } \mathbf{n d}(G)+b & 2^{b^{\mathcal{O}(\mathbf{n d}(G))}} \\ & +\mathcal{O}(|E(G)|)\end{array}$

Results

b-BEND β-RESTRICTED RAC DRAWIng (BRAC) is fixed-parameter tractable
when parameterized by

Feedback edge number fen (G)

$$
+\mathcal{O}(|E(G)|)
$$

Vertex cover number $\operatorname{ven}(G)+b$

Neighborhood diversity $\operatorname{nd}(G)+b$
$2^{b^{\mathcal{O}(\mathrm{nd}(G))}}$
$+\mathcal{O}(|E(G)|)$

Feedback Edge Number (FEN)

Definition (Feedback Edge Number). Let $G=(V, E)$ be a graph. The feedback edge number $\operatorname{fen}(G)$ is the minimal number of edges, whose removal yields an acyclic graph.

Feedback Edge Number (FEN)

Definition (Feedback Edge Number). Let $G=(V, E)$ be a graph. The feedback edge number $\operatorname{fen}(G)$ is the minimal number of edges, whose removal yields an acyclic graph.

Feedback Edge Number (FEN)

Definition (Feedback Edge Number). Let $G=(V, E)$ be a graph. The feedback edge number $\operatorname{fen}(G)$ is the minimal number of edges, whose removal yields an acyclic graph.

FEN - Kernel construction

Let $G=(V, E)$ be a graph and $F \subset E$ its feedback edge set.

FEN - Kernel construction

Let $G=(V, E)$ be a graph and $F \subset E$ its feedback edge set.

- Step 1: Iteratively remove vertices of degree one

FEN - Kernel construction

Let $G=(V, E)$ be a graph and $F \subset E$ its feedback edge set.

- Step 1: Iteratively remove vertices of degree one

Now $G^{\prime}-F$ is a tree with at most $2 \cdot \mathbf{f e n}(G)$ leaves

FEN - Kernel construction

Let $G=(V, E)$ be a graph and $F \subset E$ its feedback edge set.

- Step 1: Iteratively remove vertices of degree one
- Step 2: Partition $G^{\prime}-F$ into $\ell \leq 4 \cdot \mathbf{f e n}(G)$ disjoint subpaths

FEN - Kernel construction

Let $G=(V, E)$ be a graph and $F \subset E$ its feedback edge set.

- Step 1: Iteratively remove vertices of degree one
- Step 2: Partition $G^{\prime}-F$ into $\ell \leq 4 \cdot \mathbf{f e n}(G)$ disjoint subpaths We allow the subpaths only to intersect at their respective endpoints

FEN - Kernel construction

Let $G=(V, E)$ be a graph and $F \subset E$ its feedback edge set.

- Step 1: Iteratively remove vertices of degree one
- Step 2: Partition $G^{\prime}-F$ into $\ell \leq 4 \cdot \mathbf{f e n}(G)$ disjoint subpaths
- Step 3: Order the paths P_{1}, \ldots, P_{ℓ} in increasing order of their length

FEN - Kernel construction

Let $G=(V, E)$ be a graph and $F \subset E$ its feedback edge set.

- Step 1: Iteratively remove vertices of degree one
- Step 2: Partition $G^{\prime}-F$ into $\ell \leq 4 \cdot \mathbf{f e n}(G)$ disjoint subpaths
- Step 3: Order the paths P_{1}, \ldots, P_{ℓ} in increasing order of their length Define $P_{0}:=F, p_{i}:=\left|P_{i}\right|$

FEN - Kernel construction

Let $G=(V, E)$ be a graph and $F \subset E$ its feedback edge set.

- Step 1: Iteratively remove vertices of degree one
- Step 2: Partition $G^{\prime}-F$ into $\ell \leq 4 \cdot \mathbf{f e n}(G)$ disjoint subpaths
- Step 3: Order the paths P_{1}, \ldots, P_{ℓ} in increasing order of their length Define $P_{0}:=F, p_{i}:=\left|P_{i}\right| \quad \exists i: p_{i}>12 \ell \cdot p_{i-1}$?

FEN - Kernel construction

Let $G=(V, E)$ be a graph and $F \subset E$ its feedback edge set.

- Step 1: Iteratively remove vertices of degree one
- Step 2: Partition $G^{\prime}-F$ into $\ell \leq 4 \cdot \mathbf{f e n}(G)$ disjoint subpaths
- Step 3: Order the paths P_{1}, \ldots, P_{ℓ} in increasing order of their length Define $P_{0}:=F, p_{i}:=\left|P_{i}\right| \quad \exists i: p_{i}>12 \ell \cdot p_{i-1}$?

$$
\begin{array}{llllllllll}
P_{0} & P_{1} & P_{2} & P_{3} & P_{4} & P_{5} & P_{6} & P_{7} P_{8} & P_{9} & P_{10} P_{11}
\end{array}
$$

FEN - Kernel construction

Let $G=(V, E)$ be a graph and $F \subset E$ its feedback edge set.

- Step 1: Iteratively remove vertices of degree one
- Step 2: Partition $G^{\prime}-F$ into $\ell \leq 4 \cdot \mathbf{f e n}(G)$ disjoint subpaths
- Step 3: Order the paths P_{1}, \ldots, P_{ℓ} in increasing order of their length Define $P_{0}:=F, p_{i}:=\left|P_{i}\right| \quad \exists i: p_{i}>12 \ell \cdot p_{i-1}$?

$$
\begin{array}{llllllll}
P_{0} & P_{1} & P_{2} & P_{3} & P_{4} & P_{5} & \stackrel{.12 \ell}{P_{6}} & P_{7} \\
P_{6} & P_{9} & P_{10} P_{11}
\end{array}
$$

FEN - Kernel construction

Let $G=(V, E)$ be a graph and $F \subset E$ its feedback edge set.

- Step 1: Iteratively remove vertices of degree one
- Step 2: Partition $G^{\prime}-F$ into $\ell \leq 4 \cdot \mathbf{f e n}(G)$ disjoint subpaths
- Step 3: Order the paths P_{1}, \ldots, P_{ℓ} in increasing order of their length Define $P_{0}:=F, p_{i}:=\left|P_{i}\right| \quad \exists i: p_{i}>12 \ell \cdot p_{i-1}$?

FEN - Kernel construction

Let $G=(V, E)$ be a graph and $F \subset E$ its feedback edge set.

- Step 1: Iteratively remove vertices of degree one
- Step 2: Partition $G^{\prime}-F$ into $\ell \leq 4 \cdot \mathbf{f e n}(G)$ disjoint subpaths
- Step 3: Order the paths P_{1}, \ldots, P_{ℓ} in increasing order of their length Define $P_{0}:=F, p_{i}:=\left|P_{i}\right| \quad \exists i: p_{i}>12 \ell \cdot p_{i-1}$?

kernel of size $\operatorname{fen}(G)^{\mathcal{O}(\operatorname{fen}(G))}$

FEN - Kernel correctness

FEN - Kernel correctness

Kernel size

Let i_{0} be the smallest i such that $p_{i_{0}+1}>12 \ell \cdot p_{i_{0}}$.
■ Every long path $P_{j} \in \mathcal{P}_{\text {long }}$ is crossed at most: $4 \ell \cdot p_{i_{0}}$ times

Kernel size

Let i_{0} be the smallest i such that $p_{i_{0}+1}>12 \ell \cdot p_{i_{0}}$.

- Every long path $P_{j} \in \mathcal{P}_{\text {long }}$ is crossed at most: $4 \ell \cdot p_{i_{0}}$ times
- Each edge in $G_{\text {short }}$ has at most 3 bends
- At most $4 \sum_{i=0}^{i_{0}} p_{i}$ crossings involving edges from $G_{\text {short }}$

Total: $4 \sum_{i=0}^{i_{0}} p_{i}+\left(\ell-i_{0}\right) \leq 4 \ell \cdot p_{i_{0}}$ crossings

Kernel size

Let i_{0} be the smallest i such that $p_{i_{0}+1}>12 \ell \cdot p_{i_{0}}$.

- Every long path $P_{j} \in \mathcal{P}_{\text {long }}$ is crossed at most: $4 \ell \cdot p_{i_{0}}$ times
- Each crossing requires three vertices
- Since $\left|P_{j}\right|>12 \ell \cdot p_{i_{0}}$, each long path has enough vertices

Kernel size

Let i_{0} be the smallest i such that $p_{i_{0}+1}>12 \ell \cdot p_{i_{0}}$.

- Every long path $P_{j} \in \mathcal{P}_{\text {long }}$ is crossed at most: $4 \ell \cdot p_{i_{0}}$ times
- Each crossing requires three vertices
- Since $\left|P_{j}\right|>12 \ell \cdot p_{i_{0}}$, each long path has enough vertices
- $\left|G_{\text {short }}\right|=\sum_{i=0}^{i_{0}} p_{i} \leq \sum_{i=0}^{i_{0}} p_{0}(12 \ell)^{i}=\mathbf{f e n}(G)^{\mathcal{O}(\operatorname{fen}(G))}$

Kernel size

Let i_{0} be the smallest i such that $p_{i_{0}+1}>12 \ell \cdot p_{i_{0}}$.

- Every long path $P_{j} \in \mathcal{P}_{\text {long }}$ is crossed at most: $4 \ell \cdot p_{i_{0}}$ times
- Each crossing requires three vertices
- Since $\left|P_{j}\right|>12 \ell \cdot p_{i_{0}}$, each long path has enough vertices
$\square\left|G_{\text {short }}\right|=\sum_{i=0}^{i_{0}} p_{i} \leq \sum_{i=0}^{i_{0}} p_{0}(12 \ell)^{i}=\mathbf{f e n}(G)^{\mathcal{O}(\operatorname{fen}(G))}$

Results

b-BEND β-RESTRICTED RAC DRAWING (BRAC) is fixed-parameter tractable
when parameterized by

Feedback edge number fen (G)
$2^{\text {fen }(G)^{\mathcal{O}(\operatorname{fen}(G))}}$
$+\mathcal{O}(|E(G)|)$

Neighborhood diversity $\operatorname{nd}(G)+b$

$2^{b^{\mathcal{O}(\mathrm{nd}(G))}}$
$+\mathcal{O}(|E(G)|)$

Vertex Cover
Definition. Vertex cover: min. set $C \subseteq V$ s.t. $\forall e \in E$: e incident to $v \in C$

Vertex Cover
Definition. Vertex cover: min. set $C \subseteq V$ s.t. $\forall e \in E$: e incident to $v \in C$

■ $k=\operatorname{vcn}(G)=|C|$

Definition. Vertex cover: min. set $C \subseteq V$ s.t. $\forall e \in E$: e incident to $v \in C$

■ $k=\mathbf{v c n}(G)=|C|$

- Type: Set of vertices in $G-C$ with the same neighbourhood

Definition. Vertex cover: min. set $C \subseteq V$ s.t. $\forall e \in E$: e incident to $v \in C$

■ $k=\operatorname{vcn}(G)=|C|$

- Type: Set of vertices in $G-C$ with the same neighbourhood
- At most 2^{k} types

Definition. Vertex cover: min. set $C \subseteq V$ s.t. $\forall e \in E$: e incident to $v \in C$

■ $k=\operatorname{vcn}(G)=|C|$

- Type: Set of vertices in $G-C$ with the same neighbourhood
- At most 2^{k} types
- Idea: limit the number of vertices in each type by a function of $\operatorname{ven}(G)+b$

FTP via $\operatorname{ven}(G)+b$

- Distinguish types by number of neighbours $\left|T_{i}\right|$

FTP via $\operatorname{ven}(G)+b$

- Distinguish types by number of neighbours $\left|T_{i}\right|$

■ Case 1: $\left|T_{i}\right|=1$

FTP via $\operatorname{ven}(G)+b$

- Distinguish types by number of neighbours $\left|T_{i}\right|$
- Case 1: $\left|T_{i}\right|=1$

FTP via $\operatorname{ven}(G)+b$

- Distinguish types by number of neighbours $\left|T_{i}\right|$
- Case 1: $\left|T_{i}\right|=1$

FTP via $\operatorname{ven}(G)+b$

- Distinguish types by number of neighbours $\left|T_{i}\right|$
- Case 1: $\left|T_{i}\right|=1$

FTP via $\operatorname{vcn}(G)+b$

- Distinguish types by number of neighbours $\left|T_{i}\right|$
- Case 1: $\left|T_{i}\right|=1$

\Rightarrow can remove all types with $\left|T_{i}\right|=1$

FTP via $\operatorname{ven}(G)+b$

- Distinguish types by number of neighbours $\left|T_{i}\right|$

■ Case 1: $\left|T_{i}\right|=1$
\Rightarrow keep 0

FTP via $\operatorname{ven}(G)+b$

- Distinguish types by number of neighbours $\left|T_{i}\right|$
- Case 1: $\left|T_{i}\right|=1$

$$
\Rightarrow \text { keep } 0
$$

- Case 2: $\left|T_{i}\right| \geq 3$

FTP via $\operatorname{ven}(G)+b$

- Distinguish types by number of neighbours $\left|T_{i}\right|$

■ Case 1: $\left|T_{i}\right|=1$ \Rightarrow keep 0

- Case 2: $\left|T_{i}\right| \geq 3$

FTP via $\operatorname{ven}(G)+b$

- Distinguish types by number of neighbours $\left|T_{i}\right|$

■ Case 1: $\left|T_{i}\right|=1$ \Rightarrow keep 0

- Case 2: $\left|T_{i}\right| \geq 3$

FTP via $\operatorname{ven}(G)+b$

- Distinguish types by number of neighbours $\left|T_{i}\right|$

■ Case 1: $\left|T_{i}\right|=1$ \Rightarrow keep 0

- Case 2: $\left|T_{i}\right| \geq 3$

Lemma. $K_{3,5}$ does not admit a RAC drawing
[Didimo, Eades, Liotta 2010]

FTP via $\operatorname{ven}(G)+b$

- Distinguish types by number of neighbours $\left|T_{i}\right|$

■ Case 1: $\left|T_{i}\right|=1$ \Rightarrow keep 0

- Case 2: $\left|T_{i}\right| \geq 3$

Lemma. $K_{3,5}$ does not admit a RAC drawing
[Didimo, Eades, Liotta 2010] \Rightarrow always no-instance with $\geq 5+b$ vertices

FTP via $\operatorname{ven}(G)+b$

- Distinguish types by number of neighbours $\left|T_{i}\right|$
- Case 1: $\left|T_{i}\right|=1$

$$
\Rightarrow \text { keep } 0
$$

- Case 2: $\left|T_{i}\right| \geq 3$ \Rightarrow keep $5+b$

FTP via $\operatorname{ven}(G)+b$

- Distinguish types by number of neighbours $\left|T_{i}\right|$
- Case 1: $\left|T_{i}\right|=1$

$$
\Rightarrow \text { keep } 0
$$

■ Case 2: $\left|T_{i}\right| \geq 3$ \Rightarrow keep $5+b$

- Case 3: $\left|T_{i}\right|=2$

FTP via $\operatorname{ven}(G)+b$

- Distinguish types by number of neighbours $\left|T_{i}\right|$
- Case 1: $\left|T_{i}\right|=1$

$$
\Rightarrow \text { keep } 0
$$

■ Case 2: $\left|T_{i}\right| \geq 3$

$$
\Rightarrow \text { keep } 5+b
$$

- Case 3: $\left|T_{i}\right|=2$

Case 3: $\left|T_{i}\right|=2$

Case 3: $\left|T_{i}\right|=2$

Lemma. At most 4 vertices of a type T with $|T|=2$ can be involved in a crossing within T.

Case 3: $\left|T_{i}\right|=2$

Lemma. At most 4 vertices of a type T with $|T|=2$ can be involved in a crossing within T.

Case 3: $\left|T_{i}\right|=2$

Lemma. At most 4 vertices of a type T with $|T|=2$ can be involved in a crossing within T.

Case 3: $\left|T_{i}\right|=2$

Lemma. At most 4 vertices of a type T with $|T|=2$ can be involved in a crossing within T.

Case 3: $\left|T_{i}\right|=2$

Lemma. At most 4 vertices of a type T with $|T|=2$ can be involved in a crossing within T.

Case 3: $\left|T_{i}\right|=2$

Lemma. At most 4 vertices of a type T with $|T|=2$ can be involved in a crossing within T.

Case 3: $\left|T_{i}\right|=2$

- All other vertices of T_{i} form a hierarchy

Case 3: $\left|T_{i}\right|=2$

- All other vertices of T_{i} form a hierarchy

Case 3: $\left|T_{i}\right|=2$

- All other vertices of T_{i} form a hierarchy

Case 3: $\left|T_{i}\right|=2$

All other vertices of T_{i} form a hierarchy

Case 3: $\left|T_{i}\right|=2$

- All other vertices of T_{i} form a hierarchy

Case 3: $\left|T_{i}\right|=2$

- All other vertices of T_{i} form a hierarchy

Case 3: $\left|T_{i}\right|=2$

- All other vertices of T_{i} form a hierarchy

Case 3: $\left|T_{i}\right|=2$

- All other vertices of T_{i} form a hierarchy

Case 3: $\left|T_{i}\right|=2$

- All other vertices of T_{i} form a hierarchy

- Crossing-free edge guaranteed with $>3 k$
members

Case 3: $\left|T_{i}\right|=2$

- All other vertices of T_{i} form a hierarchy

- Crossing-free edge guaranteed with $>3 k$
members

Case 3: $\left|T_{i}\right|=2$

- All other vertices of T_{i} form a hierarchy

- Crossing-free edge guaranteed with $>3 k$
members

Case 3: $\left|T_{i}\right|=2$

- All other vertices of T_{i} form a hierarchy

- Crossing-free edge guaranteed with $>3 k$
members

Case 3: $\left|T_{i}\right|=2$

- All other vertices of T_{i} form a hierarchy

Case 3: $\left|T_{i}\right|=2$

- All other vertices of T_{i} form a hierarchy

Case 3: $\left|T_{i}\right|=2$

■ All other vertices of T_{i} form a hierarchy

- Crossing-free edge guaranteed with $>3 k$

FPT via $\operatorname{vcn}(G)+b$

- Distinguish types by cardinality $\left|T_{i}\right|$
- Case 1: $\left|T_{i}\right|=1$

$$
\Rightarrow \text { keep } 0
$$

- Case 2: $\left|T_{i}\right| \geq 3$

$$
\Rightarrow \text { keep } 5+b
$$

- Case 3: $\left|T_{i}\right|=2$ \Rightarrow keep $3 k+b$

FPT via $\operatorname{vcn}(G)+b$

- Distinguish types by cardinality $\left|T_{i}\right|$

■ Case 1: $\left|T_{i}\right|=1$

$$
\Rightarrow \text { keep } 0
$$

- Case 2: $\left|T_{i}\right| \geq 3$

$$
\Rightarrow \text { keep } 5+b
$$

- Case 3: $\left|T_{i}\right|=2$ \Rightarrow keep $3 k+b$

Total: $|V|=$

FPT via $\operatorname{vcn}(G)+b$

- Distinguish types by cardinality $\left|T_{i}\right|$
- Case 1: $\left|T_{i}\right|=1$

$$
\Rightarrow \text { keep } 0
$$

- Case 2: $\left|T_{i}\right| \geq 3$

$$
\Rightarrow \text { keep } 5+b
$$

- Case 3: $\left|T_{i}\right|=2$ \Rightarrow keep $3 k+b$

Total: $|V|=\begin{gathered}k \\ \operatorname{vcn}(G)\end{gathered}$

FPT via $\mathbf{v c n}(G)+b$

- Distinguish types by cardinality $\left|T_{i}\right|$

■ Case 1: $\left|T_{i}\right|=1$

$$
\Rightarrow \text { keep } 0
$$

- Case 2: $\left|T_{i}\right| \geq 3$

$$
\Rightarrow \text { keep } 5+b
$$

- Case 3: $\left|T_{i}\right|=2$ \Rightarrow keep $3 k+b$

Total: $|V|=\begin{gathered}k \\ \operatorname{ven}(G)\end{gathered}+k . \begin{gathered}0 \\ \text { Case } 1\end{gathered}$

FPT via $\operatorname{ven}(G)+b$

- Distinguish types by cardinality $\left|T_{i}\right|$

■ Case 1: $\left|T_{i}\right|=1$

$$
\Rightarrow \text { keep } 0
$$

■ Case 2: $\left|T_{i}\right| \geq 3$

$$
\Rightarrow \text { keep } 5+b
$$

- Case 3: $\left|T_{i}\right|=2$ \Rightarrow keep $3 k+b$

Total: $|V|=\underset{\operatorname{ven}(G)}{k}+k . \underset{\text { Case 1 }}{\cos ^{0}}+2^{k} . \underset{\text { Case 2 }}{(5+b)}$

FPT via $\operatorname{ven}(G)+b$

- Distinguish types by cardinality $\left|T_{i}\right|$
- Case 1: $\left|T_{i}\right|=1$

$$
\Rightarrow \text { keep } 0
$$

- Case 2: $\left|T_{i}\right| \geq 3$

$$
\Rightarrow \text { keep } 5+b
$$

- Case 3: $\left|T_{i}\right|=2$ \Rightarrow keep $3 k+b$

Total: $|V|=\underset{\operatorname{vcn}(G)}{k}+k . \underset{\text { Case 1 }}{0}+2^{k} . \underset{\text { Case 2 }}{(5+b)}+k^{2} . \underset{\text { Case 3 }}{(3 k+b)}$

FPT via $\operatorname{ven}(G)+b$

- Distinguish types by cardinality $\left|T_{i}\right|$

■ Case 1: $\left|T_{i}\right|=1$

$$
\Rightarrow \text { keep } 0
$$

- Case 2: $\left|T_{i}\right| \geq 3$

$$
\Rightarrow \text { keep } 5+b
$$

- Case 3: $\left|T_{i}\right|=2$ \Rightarrow keep $3 k+b$

Total: $|V|=\underset{\operatorname{ven}(G)}{k}+k \cdot \underset{\text { Case 1 }}{0}+2^{k} . \underset{\substack{(5+b) \\ \text { Case 2 }}}{(5)}+k^{2} . \underset{\text { Case 3 }}{(3 k+b)}=\mathcal{O}\left(b \cdot 2^{k}\right)$

FPT via $\operatorname{ven}(G)+b$

- Distinguish types by cardinality $\left|T_{i}\right|$

■ Case 1: $\left|T_{i}\right|=1$ \Rightarrow keep 0

■ Case 2: $\left|T_{i}\right| \geq 3$

$$
\Rightarrow \text { keep } 5+b
$$

- Case 3: $\left|T_{i}\right|=2$ \Rightarrow keep $3 k+b$

Total: $|V|=\underset{\operatorname{vcn}(G)}{k}+k \cdot \underset{\text { Case 1 }}{0}+2^{k} . \underset{\substack{(5+b) \\ \text { Case 2 }}}{(5)}+k^{2} . \underset{\text { Case 3 }}{(3 k+b)}=\mathcal{O}\left(b \cdot 2^{k}\right)$

Solve time $m^{\mathcal{O}\left(m^{2}\right)}$

FPT via $\operatorname{ven}(G)+b$

- Distinguish types by cardinality $\left|T_{i}\right|$
- Case 1: $\left|T_{i}\right|=1$ \Rightarrow keep 0

■ Case 2: $\left|T_{i}\right| \geq 3$

$$
\Rightarrow \text { keep } 5+b
$$

- Case 3: $\left|T_{i}\right|=2$ \Rightarrow keep $3 k+b$

Total: $|V|=\underset{\operatorname{vcn}(G)}{k}+k \cdot \underset{\text { Case 1 }}{0}+2^{k} . \underset{\substack{(5+b) \\ \text { Case 2 }}}{(5)}+k^{2} . \underset{\text { Case 3 }}{(3 k+b)}=\mathcal{O}\left(b \cdot 2^{k}\right)$

Solve time $\quad m^{\mathcal{O}\left(m^{2}\right)} \quad$ Kernel size $\quad \mathcal{O}\left(b \cdot 2^{k}\right)$

FPT via $\operatorname{ven}(G)+b$

- Distinguish types by cardinality $\left|T_{i}\right|$

■ Case 1: $\left|T_{i}\right|=1$ \Rightarrow keep 0

- Case 2: $\left|T_{i}\right| \geq 3$

$$
\Rightarrow \text { keep } 5+b
$$

- Case 3: $\left|T_{i}\right|=2$ \Rightarrow keep $3 k+b$

Total: $|V|=\underset{\operatorname{ven}(G)}{k}+k \cdot \underset{\text { Case 1 }}{0}+2^{k} . \underset{\text { Case 2 }}{(5+b)}+k^{2} . \underset{\text { Case 3 }}{(3 k+b)}=\mathcal{O}\left(b \cdot 2^{k}\right)$

Solve time

$$
m^{\mathcal{O}\left(m^{2}\right)}
$$

Kernel size $\mathcal{O}\left(b \cdot 2^{k}\right)$
Kernel time $\mathcal{O}(|E(G)|)$

FPT via $\operatorname{ven}(G)+b$

- Distinguish types by cardinality $\left|T_{i}\right|$

■ Case 1: $\left|T_{i}\right|=1$ \Rightarrow keep 0

- Case 2: $\left|T_{i}\right| \geq 3$

$$
\Rightarrow \text { keep } 5+b
$$

- Case 3: $\left|T_{i}\right|=2$ \Rightarrow keep $3 k+b$

Total: $|V|=\underset{\operatorname{vcn}(G)}{k}+k \cdot \underset{\text { Case 1 }}{0}+2^{k} . \underset{\text { Case 2 }}{(5+b)}+k^{2} . \underset{\text { Case 3 }}{(3 k+b)}=\mathcal{O}\left(b \cdot 2^{k}\right)$

Results

b-BEND β-RESTRICTED RAC DRAWING (BRAC) is fixed-parameter tractable
when parameterized by

Feedback edge number fen (G) $2^{\text {fen }(G)^{\mathcal{O}(\operatorname{fen}(G))}}$
$+\mathcal{O}(|E(G)|)$

N in Vertex cover number $\operatorname{vcn}(G)+b$
$2^{2^{\mathcal{O}(\operatorname{ven}(G)+\log b)}}$
$+\mathcal{O}(|E(G)|)$

Neighbourhood Diversity

Definition. Neighborhood diversity $\mathbf{n d}(G): \min k$ s.t. $\exists k$-partition neighborhood equivalent for each vertex in same partition

Neighbourhood Diversity
Definition. Neighborhood diversity $\mathbf{n d}(G): \min k$ s.t. $\exists k$-partition neighborhood equivalent for each vertex in same partition

Neighbourhood Diversity
Definition. Neighborhood diversity $\mathbf{n d}(G): \min k$ s.t. $\exists k$-partition neighborhood equivalent for each vertex in same partition

Neighbourhood Diversity
Definition. Neighborhood diversity $\mathbf{n d}(G): \min k$ s.t. $\exists k$-partition neighborhood equivalent for each vertex in same partition

Neighbourhood Diversity
Definition. Neighborhood diversity $\mathbf{n d}(G): \min k$ s.t. $\exists k$-partition neighborhood equivalent for each vertex in same partition

$\operatorname{nd}(G) \leq f(\operatorname{vcn}(G))$

Neighbourhood Diversity
Definition. Neighborhood diversity $\operatorname{nd}(G): \min k$ s.t. $\exists k$-partition neighborhood equivalent for each vertex in same partition

$\square \mathbf{n d}(G) \leq f(\operatorname{vcn}(G))$

Lemma. G b-bend RAC drawable $\Rightarrow \operatorname{vcn}(G) \leq 5 \cdot \mathbf{n d}(G)+b$.

Neighbourhood Diversity
Definition. Neighborhood diversity $\operatorname{nd}(G): \min k$ s.t. $\exists k$-partition neighborhood equivalent for each vertex in same partition

$\square \operatorname{nd}(G) \leq f(\operatorname{vcn}(G))$

Lemma. G-bend RAC drawable $\Rightarrow \mathbf{v c n}(G) \leq 5 \cdot \mathbf{n d}(G)+b$.

- Implies BRAC is FPT by $\operatorname{nd}(G)$

Results

- b-Bend β-Restricted RAC Drawing (BRAC) is
fixed-parameter tractable when parameterized by

Feedback edge number fen (G)

$$
\begin{aligned}
& 2^{\mathrm{fen}(G)^{\mathcal{O}(\operatorname{fen}(G))}} \\
& +\mathcal{O}(|E(G)|)
\end{aligned}
$$

Vertex cover number $\operatorname{vcn}(G)+b$

$$
\begin{aligned}
& 2^{2^{\mathcal{O}(\operatorname{ven}(G)+\log b)}} \\
& +\mathcal{O}(|E(G)|)
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Neighborhood diversity } \mathbf{n d}(G)+b & 2^{b^{\mathcal{O (n d}(G))}} \\
& +\mathcal{O}(|E(G)|)
\end{array}
$$

Open questions

Feedback edge set

Open questions

- Also FPT by $\mathbf{v c n}(G)$ alone? (instead of $\operatorname{ven}(G)+b$)

Vertex cover

Feedback edge set

Open questions

- Also FPT by $\mathbf{v c n}(G)$ alone? (instead of $\operatorname{ven}(G)+b$)
- Obtain smaller (polynomially sized) kernels

Feedback edge set

Open questions

- Also FPT by $\mathbf{v e n}(G)$ alone? (instead of $\operatorname{ven}(G)+b$)
- Obtain smaller (polynomially sized) kernels

Feedback edge set

Open questions

- Also FPT by $\mathbf{v e n}(G)$ alone? (instead of $\operatorname{ven}(G)+b$)
- Obtain smaller (polynomially sized) kernels

Feedback edge set

Open questions

- Also FPT by $\mathbf{v c n}(G)$ alone? (instead of $\operatorname{vcn}(G)+b$)
- Obtain smaller (polynomially sized) kernels

Open questions

- Also FPT by $\operatorname{vcn}(G)$ alone? (instead of $\operatorname{vcn}(G)+b$)
- Obtain smaller (polynomially sized) kernels

