

Fakultät für Informatik und Mathematik

Parameterized Complexity of Simultaneous Planarity

Simon D. Fink, <u>Matthias Pfretzschner</u>, Ignaz Rutter

SIMULTANEOUS EMBEDDING WITH FIXED EDGES (SEFE)Input:k planar graphs $G^{(1)}, \ldots, G^{(k)}$ on vertex set V with a shared graph
 $G^{(1)} \cap G^{(1)}$ for each pair.Question:Are there planar drawings $\Gamma^{(1)}, \ldots, \Gamma^{(k)}$ such that $\Gamma^{(1)}$ and $\Gamma^{(1)}$ coincide on $G^{(1)} \cap G^{(1)}$?

SIMULTANEOUS EMBEDDING WITH FIXED EDGES (SEFE)

Input: *k* planar graphs $G^{(1)}, \ldots, G^{(k)}$ on vertex set *V* with a *shared graph* $G^{(i)} \cap G^{(j)}$ for each pair.

Question: Are there planar drawings $\Gamma^{(1)}, \ldots, \Gamma^{(k)}$ such that $\Gamma^{(j)}$ and $\Gamma^{(j)}$ coincide on $G^{(j)} \cap G^{(j)}$?

Sunflower Case: $G^{(i)} \cap G^{(j)}$ is the same graph for each pair *i*, *j*

SIMULTANEOUS EMBEDDING WITH FIXED EDGES (SEFE)

Input: *k* planar graphs $G^{(1)}, \ldots, G^{(k)}$ on vertex set *V* with a *shared graph* $G^{(i)} \cap G^{(j)}$ for each pair.

Question: Are there planar drawings $\Gamma^{(1)}, \ldots, \Gamma^{(k)}$ such that $\Gamma^{(j)}$ and $\Gamma^{(j)}$ coincide on $G^{(j)} \cap G^{(j)}$?

Sunflower Case: $G^{(j)} \cap G^{(j)}$ is the same graph for each pair *i*, *j*

Theorem

SEFE is NP-complete for $k \ge 3$, even in the sunflower case.

[Gassner et al. '06]

[Schaefer '13]

1

shared graph

 $G^{(1)}$

shared graph

G

union graph

Vertex Cover C: Every edge is incident to a vertex of C **Vertex Cover Number** φ:

Size of a minimum Vertex Cover

Vertex Cover C: Every edge is incident to a vertex of C **Vertex Cover Number** φ: Size of a minimum Vertex Cover

Partition vertices in $V(G^{\cup}) \setminus C$ into **types** according to the edges connecting them to C

same type

Vertex Cover C: Every edge is incident to a vertex of C **Vertex Cover Number** φ: Size of a minimum Vertex Cover

Vertex Cover *C*:

Every edge is incident to a vertex of C

Vertex Cover Number φ: Size of a minimum Vertex Cover

 $\mathcal{P}_{\geq 3} :=$ types with degree ≥ 3 in some $G^{(i)}$ $\mathcal{P}_{\leq 2} :=$ types with degree ≤ 2 in all $G^{(i)}$

Reduction Rule 1: Type $U \in \mathcal{P}_{\leq 2}$ with $|U| > 1 \rightarrow$ remove one vertex of U

Vertex Cover *C*:

Every edge is incident to a vertex of C

Vertex Cover Number φ: Size of a minimum Vertex Cover

 $\mathcal{P}_{\geq 3} :=$ types with degree ≥ 3 in some $G^{(i)}$ $\mathcal{P}_{\leq 2} :=$ types with degree ≤ 2 in all $G^{(i)}$

Reduction Rule 1: Type $U \in \mathcal{P}_{\leq 2}$ with $|U| > 1 \rightarrow$ remove one vertex of U

Vertex Cover *C*:

Every edge is incident to a vertex of C

Vertex Cover Number φ: Size of a minimum Vertex Cover

 $\mathcal{P}_{\geq 3} := \text{types with degree} \geq 3 \text{ in some } G^{(i)}$ $\mathcal{P}_{\leq 2} := \text{types with degree} \leq 2 \text{ in all } G^{(i)}$

Reduction Rule 1: Type $U \in \mathcal{P}_{\leq 2}$ with $|U| > 1 \rightarrow$ remove one vertex of U

Vertex Cover C:

Every edge is incident to a vertex of C

Vertex Cover Number φ: Size of a minimum Vertex Cover

 $\mathcal{P}_{\geq 3} :=$ types with degree ≥ 3 in some $G^{(i)}$ $\mathcal{P}_{\leq 2} :=$ types with degree ≤ 2 in all $G^{(i)}$

Reduction Rule 1: Type $U \in \mathcal{P}_{\leq 2}$ with $|U| > 1 \rightarrow$ remove one vertex of U

RR1: Each type contains < 1 vertices</p>

Vertex Cover C:

Every edge is incident to a vertex of C

Vertex Cover Number φ: Size of a minimum Vertex Cover

 $\mathcal{P}_{\geq 3} := \text{types with degree} \geq 3 \text{ in some } G^{(i)}$ $\mathcal{P}_{\leq 2} := \text{types with degree} \leq 2 \text{ in all } G^{(i)}$

Reduction Rule 1: Type $U \in \mathcal{P}_{\leq 2}$ with $|U| > 1 \rightarrow$ remove one vertex of U

RR1: Each type contains < 1 vertices</p>

 $\Rightarrow |igcup \mathcal{P}_{\leq 2}| \in O(arphi^{2k})$

Vertex Cover C:

Every edge is incident to a vertex of C

Vertex Cover Number φ: Size of a minimum Vertex Cover

 $\mathcal{P}_{\geq 3} :=$ types with degree ≥ 3 in some $G^{(i)}$ $\mathcal{P}_{\leq 2} :=$ types with degree ≤ 2 in all $G^{(i)}$

Reduction Rule 1: Type $U \in \mathcal{P}_{\leq 2}$ with $|U| > 1 \rightarrow$ remove one vertex of U

RR1: Each type contains < 1 vertices</p>

 $\Rightarrow |igcup \mathcal{P}_{\leq 2}| \in O(arphi^{2k})$

Remaining: vertices with degree \geq 3 in some $G^{(j)}$

Vertex Cover C:

Every edge is incident to a vertex of C

Vertex Cover Number φ: Size of a minimum Vertex Cover

 $\begin{array}{l} \mathcal{P}_{\geq 3} := \text{types with degree} \geq 3 \text{ in some } G^{(j)} \\ \mathcal{P}_{\leq 2} := \text{types with degree} \leq 2 \text{ in all } G^{(j)} \end{array}$

Reduction Rule 1: Type $U \in \mathcal{P}_{\leq 2}$ with $|U| > 1 \rightarrow$ remove one vertex of U

RR1: Each type contains < 1 vertices</p>

 $\Rightarrow |\bigcup \mathcal{P}_{\leq 2}| \in O(arphi^{2k})$

Remaining: vertices with degree \geq 3 in some $G^{(j)}$

Vertex Cover C:

Every edge is incident to a vertex of C

Vertex Cover Number φ: Size of a minimum Vertex Cover

 $\mathcal{P}_{\geq 3} :=$ types with degree ≥ 3 in some $G^{(i)}$ $\mathcal{P}_{\leq 2} :=$ types with degree ≤ 2 in all $G^{(i)}$

Reduction Rule 1: Type $U \in \mathcal{P}_{\leq 2}$ with $|U| > 1 \rightarrow$ remove one vertex of U

RR1: Each type contains < 1 vertices</p>

 $\Rightarrow |\bigcup \mathcal{P}_{\leq 2}| \in O(arphi^{2k})$

Remaining: vertices with degree \geq 3 in some $G^{(j)}$

Vertex Cover C:

Every edge is incident to a vertex of C

Vertex Cover Number φ: Size of a minimum Vertex Cover

 $\mathcal{P}_{\geq 3} := \text{types with degree} \geq 3 \text{ in some } G^{(i)}$ $\mathcal{P}_{\leq 2} := \text{types with degree} \leq 2 \text{ in all } G^{(i)}$

Reduction Rule 1: Type $U \in \mathcal{P}_{\leq 2}$ with $|U| > 1 \rightarrow$ remove one vertex of U

RR1: Each type contains < 1 vertices</p>

 $\Rightarrow |\bigcup \mathcal{P}_{\leq 2}| \in O(arphi^{2k})$

Remaining: vertices with degree \geq 3 in some $G^{(j)}$

Planarity ensures: #deg- $_{\geq}$ 3 vertices in $G^{(i)} \in O(\phi)$

Vertex Cover C:

Every edge is incident to a vertex of C

Vertex Cover Number φ: Size of a minimum Vertex Cover

 $\begin{array}{l} \mathcal{P}_{\geq 3} := \text{types with degree} \geq 3 \text{ in some } G^{(i)} \\ \mathcal{P}_{\leq 2} := \text{types with degree} \leq 2 \text{ in all } G^{(i)} \end{array}$

Reduction Rule 1: Type $U \in \mathcal{P}_{\leq 2}$ with $|U| > 1 \rightarrow$ remove one vertex of U

RR1: Each type contains < 1 vertices</p>

 $\Rightarrow |\bigcup \mathcal{P}_{\leq 2}| \in O(arphi^{2k})$

Remaining: vertices with degree \geq 3 in some $G^{(j)}$

Planarity ensures: #deg- $_{\geq}$ 3 vertices in $G^{(i)} \in O(\phi)$

 $\Rightarrow |\bigcup \mathcal{P}_{\geq 3}| = O(k\varphi)$

Vertex Cover C:

Every edge is incident to a vertex of C

Vertex Cover Number φ: Size of a minimum Vertex Cover

 $\begin{array}{l} \mathcal{P}_{\geq 3} := \text{types with degree} \geq 3 \text{ in some } G^{(i)} \\ \mathcal{P}_{\leq 2} := \text{types with degree} \leq 2 \text{ in all } G^{(i)} \end{array}$

Reduction Rule 1: Type $U \in \mathcal{P}_{\leq 2}$ with $|U| > 1 \rightarrow$ remove one vertex of U

RR1: Each type contains < 1 vertices</p>

 $\Rightarrow |\bigcup \mathcal{P}_{\leq 2}| \in O(arphi^{2k})$

Remaining: vertices with degree \geq 3 in some $G^{(j)}$

Planarity ensures: #deg- $_{\geq}$ 3 vertices in $G^{(i)} \in O(\varphi)$ $\Rightarrow |\bigcup \mathcal{P}_{\geq 3}| = O(k\varphi)$ $\Rightarrow |V(G^{\cup})| = O(\varphi^{2k})$

Vertex Cover C:

Every edge is incident to a vertex of C

Vertex Cover Number φ: Size of a minimum Vertex Cover

 $\begin{array}{l} \mathcal{P}_{\geq 3} := \text{types with degree} \geq 3 \text{ in some } G^{(j)} \\ \mathcal{P}_{\leq 2} := \text{types with degree} \leq 2 \text{ in all } G^{(j)} \end{array}$

Reduction Rule 1: Type $U \in \mathcal{P}_{\leq 2}$ with $|U| > 1 \rightarrow$ remove one vertex of U

RR1: Each type contains < 1 vertices</p>

 $\Rightarrow |\bigcup \mathcal{P}_{\leq 2}| \in O(arphi^{2k})$

Remaining: vertices with degree \geq 3 in some $G^{(j)}$

Theorem

SEFE is FPT w. r. t. the vertex cover number φ of G^{\cup} and the number of input graphs k and admits a kernel of size $O(\varphi^{2k})$

Vertex Cover C:

Every edge is incident to a vertex of C

Vertex Cover Number φ: Size of a minimum Vertex Cover

 $\begin{array}{l} \mathcal{P}_{\geq 3} := \text{types with degree} \geq 3 \text{ in some } G^{(j)} \\ \mathcal{P}_{\leq 2} := \text{types with degree} \leq 2 \text{ in all } G^{(j)} \end{array}$

Reduction Rule 1: Type $U \in \mathcal{P}_{\leq 2}$ with $|U| > 1 \rightarrow$ remove one vertex of U

RR1: Each type contains < 1 vertices</p>

 $\Rightarrow |igcup \mathcal{P}_{\leq 2}| \in O(arphi^{2k})$

Remaining: vertices with degree \geq 3 in some $G^{(j)}$

Theorem

SEFE is FPT w. r. t. the vertex cover number φ of G^{\cup} and the number of input graphs k and admits a kernel of size $O(\varphi^{2k})$

Theorem

SEFE is FPT w. r. t. the feedback edge set number ψ of G^{\cup} and the number of input graphs k and admits a kernel of size $O(k\psi)$

What about the vertex cover number of the shared graph?

What about the vertex cover number of the shared graph?

Theorem [Angelini et al. '15] SEFE is NP-complete for $k \ge 3$ input graphs, even if the shared graph is a star

What about the vertex cover number of the shared graph?

Theorem [Angelini et al. '15]

SEFE is NP-complete for $k \ge 3$ input graphs, even if the shared graph is a star

Theorem

SEFE is para-NP-hard w.r.t. the vertex cover number of *G* plus the number of input graphs

What about the vertex cover number of the shared graph?

Theorem [Angelini et al. '15]

SEFE is NP-complete for $k \ge 3$ input graphs, even if the shared graph is a star

Theorem

SEFE is para-NP-hard w.r.t. the vertex cover number of *G* plus the number of input graphs

Theorem

SEFE is FPT w.r.t. the vertex cover number plus the maximum degree of G

What about the vertex cover number of the shared graph?

Theorem [Angelini et al. '15]

SEFE is NP-complete for $k \ge 3$ input graphs, even if the shared graph is a star

Theorem

SEFE is para-NP-hard w.r.t. the vertex cover number of *G* plus the number of input graphs

Theorem

SEFE is FPT w.r.t. the vertex cover number plus the maximum degree of G

Proof: • combination bounds size of *G* (except for isolated vertices)

- brute-force all embeddings of G
- SEFE solvable in O(n²) if every conn. [Bläsius et al. '13] component of G has fixed embedding

What about the vertex cover number of the shared graph?

Theorem [Angelini et al. '15]

SEFE is NP-complete for $k \ge 3$ input graphs, even if the shared graph is a star

Theorem

SEFE is para-NP-hard w.r.t. the vertex cover number of *G* plus the number of input graphs

Theorem

SEFE is FPT w.r.t. the vertex cover number plus the maximum degree of G

- vc(G) := vertex cover number of G
 - $\Delta_1 := \max$. number of deg-1 neighbors of a single vertex in G

What about the vertex cover number of the shared graph?

Theorem [Angelini et al. '15]

SEFE is NP-complete for $k \ge 3$ input graphs, even if the shared graph is a star

Theorem

SEFE is para-NP-hard w.r.t. the vertex cover number of G plus the number of input graphs

Theorem

SEFE is FPT w.r.t. the vertex cover number plus the maximum degree of G

- vc(G) := vertex cover number of G
 - $\Delta_1 := \max$. number of deg-1 neighbors of a single vertex in G
 - \rightsquigarrow degree-2 and degree-0 vertices unbounded

What about the vertex cover number of the shared graph?

Theorem [Angelini et al. '15]

SEFE is NP-complete for $k \ge 3$ input graphs, even if the shared graph is a star

Theorem

SEFE is para-NP-hard w.r.t. the vertex cover number of G plus the number of input graphs

Theorem

SEFE is FPT w.r.t. the vertex cover number plus the maximum degree of G

vc(G) := vertex cover number of G

 $\Delta_1 := \max$. number of deg-1 neighbors of a single vertex in G

 \leadsto degree-2 and degree-0 vertices unbounded

Theorem

SEFE is FPT w.r.t. $vc(G) + \Delta_1$ and can be solved in time $O(2^{O(vc(G))} \cdot (2(vc(G) + \Delta_1))^{(vc(G) + \Delta_1)^2 \cdot 3 vc(G)} \cdot ((vc(G) + \Delta_1)!)^{3 vc(G)} \cdot n^{O(1)})$

Parameters Shared Graph G

[this work]

Theorem SEFE FPT w.r.t. $vc(G) + \Delta_1$

- vc(*G*) := vertex cover number
- fes(G) := feedback edge set number
- cc(*G*) := number of connected components
- cv(G) := number of cutvertices
 - $\Delta_1 := \max$. number of deg-1 neighbors in G
 - $\Delta := \max$. degree of G

- Input: Ground set \mathcal{X} , set \mathcal{T} of triplets over \mathcal{X}
- Seek: Linear order of \mathcal{X} where $(x, y, z) \in \mathcal{T} \Rightarrow y$ lies between x and z

- Input: Ground set \mathcal{X} , set \mathcal{T} of triplets over \mathcal{X}
- Seek: Linear order of \mathcal{X} where $(x, y, z) \in \mathcal{T} \Rightarrow y$ lies between x and z

 $\mathcal{X} = \{a, b, c, d\}, \mathcal{T} = \{(a, b, d), (b, c, d)\}$

- Input: Ground set \mathcal{X} , set \mathcal{T} of triplets over \mathcal{X}
- Seek: Linear order of \mathcal{X} where $(x, y, z) \in \mathcal{T} \Rightarrow y$ lies between x and z

 $\mathcal{X} = \{a, b, c, d\}, \mathcal{T} = \{(a, b, d), (b, c, d)\}$

- Input: Ground set \mathcal{X} , set \mathcal{T} of triplets over \mathcal{X}
- Seek: Linear order of \mathcal{X} where $(x, y, z) \in \mathcal{T} \Rightarrow y$ lies between x and z

$$\mathcal{X} = \{a, b, c, d\}, \mathcal{T} = \{(a, b, d), (b, c, d)\}$$

- Input: Ground set \mathcal{X} , set \mathcal{T} of triplets over \mathcal{X}
- Seek: Linear order of \mathcal{X} where $(x, y, z) \in \mathcal{T} \Rightarrow y$ lies between x and z

$$\mathcal{X} = \{a, b, c, d\}, \mathcal{T} = \{(a, b, d), (b, c, d)\}$$

$\Delta_1 := \max$. number of deg-1 neighbors of a single vertex in G

Theorem SEFE is para-NP-hard w.r.t. Δ_1

Parameters Shared Graph G

[this work]

SEFE FPT w.r.t. $vc(G) + \Delta_1$

vc(G) := vertex cover number

- fes(G) := feedback edge set number
- cc(*G*) := number of connected components
- cv(G) := number of cutvertices
 - $\Delta_1 := \max$. number of deg-1 neighbors in G
 - $\Delta := \max$. degree of G

Idea: Linear ordering of X via linear orderings of triplets

$$\mathcal{X} = \{a, b, c, d\}, \mathcal{T} = \{(a, b, c), (a, b, d)\}$$

Idea: Linear ordering of X via linear orderings of triplets

$$\mathcal{X} = \{a, b, c, d\}, \mathcal{T} = \{(a, b, c), (a, b, d)\}$$

- Idea: Linear ordering of X via linear orderings of triplets
- Ensure consistency of pairs via exclusive edges
- Triplets enforce transitivity

$$\mathcal{X} = \{a, b, c, d\}, \mathcal{T} = \{(a, b, c), (a, b, d)\}$$

- Idea: Linear ordering of X via linear orderings of triplets
- Ensure consistency of pairs via exclusive edges
- Triplets enforce transitivity

 $\mathcal{X} = \{a, b, c, d\}, \mathcal{T} = \{(a, b, c), (a, b, d)\}$

- Idea: Linear ordering of X via linear orderings of triplets
- Ensure consistency of pairs via exclusive edges
- Triplets enforce transitivity
- BETWEENNESS-Triplets via rigids

- Idea: Linear ordering of \mathcal{X} via linear orderings of triplets
- Ensure consistency of pairs via exclusive edges
- Triplets enforce transitivity
- BETWEENNESS-Triplets via rigids

Theorem

If the number of graphs is part of the input, SEFE is NP-complete, even if the shared graph is a tree with maximum degree 4

- Idea: Linear ordering of \mathcal{X} via linear orderings of triplets
- Ensure consistency of pairs via exclusive edges
- Triplets enforce transitivity
- BETWEENNESS-Triplets via rigids

Theorem

If the number of graphs is part of the input, SEFE is NP-complete, even if the shared graph is a tree and the union graph has maximum degree 4

Overview Parameters Shared Graph*

- vc(G) := vertex cover number
- fes(G) := feedback edge set number
- cc(G) := number of connected components
- cv(G) := number of cutvertices
 - $\Delta_1 := \max$. number of deg-1 neighbors in G
 - $\Delta := \max$. degree of *G*
 - Δ^{\bigcirc} := max. degree among all input graphs
 - $\Delta^{\cup} := \max$. degree of the union graph

*If the number of graphs is part of the input

Overview Parameters Shared Graph*

- vc(G) := vertex cover number
- fes(G) := feedback edge set number
- cc(G) := number of connected components
- cv(G) := number of cutvertices
 - $\Delta_1 := \max$. number of deg-1 neighbors in G
 - $\Delta := \max$. degree of *G*
 - Δ^{\bigcirc} := max. degree among all input graphs
 - $\Delta^{\cup} := \max$. degree of the union graph

*If the number of graphs is part of the input

Overview Parameters Shared Graph*

- vc(*G*) := vertex cover number
- fes(G) := feedback edge set number
- cc(G) := number of connected components
- cv(G) := number of cutvertices
 - $\Delta_1 := \max$. number of deg-1 neighbors in *G*
 - $\Delta := \max$. degree of *G*
 - Δ^{\bigcirc} := max. degree among all input graphs
 - $\Delta^{\scriptscriptstyle \cup} := \max.$ degree of the union graph

Is SEFE still hard for constant maximum degree of *G* and constant number of input graphs?

*If the number of graphs is part of the input