## 4 segments

# The Parametrized Complexity of the Segment Number 



Sabine Cornelsen
Konstanz, Germany
Siddharth Gupta
Warwick, UK

Giordano Da Lozzo
Roma III, Italy
Jan Kratochvíl
Prague, Czech Republic Charles University

## Luca Grilli

Perugia, Italy
Alexander Wolff
Würzburg, Germany

Symposium on Graph Drawing and Network Visualization, GD 2023, Isola delle Femmine

## Basic Definitions

segment $=$ maximal set of edges forming a line segment
segment number $\operatorname{seg}(G)$ of a planar graph $G$ :
minimum number of segments
in any planar straight-line drawing of $G$
Dujmović, Eppstein, Suderman, Wood (CGTA'07)


## Basic Definitions

segment $=$ maximal set of edges forming a line segment
segment number $\operatorname{seg}(G)$ of a planar graph $G$ :
minimum number of segments
in any planar straight-line drawing of $G$
Dujmović, Eppstein, Suderman, Wood (CGTA'07)


| minimizing number of segments |
| :---: |
| $\hat{=}$ |
| maximizing number of alignments |

## Basic Definitions

segment $=$ maximal set of edges forming a line segment
segment number $\operatorname{seg}(G)$ of a planar graph $G$ :
minimum number of segments
in any planar straight-line drawing of $G$
Dujmović, Eppstein, Suderman, Wood (CGTA'07)
minimizing number of segments
$\hat{=}$
maximizing number of alignments


| minimizing number of segments |
| :---: |
| $\hat{=}$ |
| maximizing number of alignments |



## Basic Definitions

segment $=$ maximal set of edges forming a line segment
segment number $\operatorname{seg}(G)$ of a planar graph $G$ :
minimum number of segments
in any planar straight-line drawing of $G$
Dujmović, Eppstein, Suderman, Wood (CGTA'07)

| minimizing number of segments |
| :---: |
| $\hat{=}$ |
| maximizing number of alignments |



## Basic Definitions

segment $=$ maximal set of edges forming a line segment
segment number $\operatorname{seg}(G)$ of a planar graph $G$ :
minimum number of segments
in any planar straight-line drawing of $G$
Dujmović, Eppstein, Suderman, Wood (CGTA'07)

minimizing number of segments
$\hat{\overline{=}}$
maximizing number of alignments
line cover number line $(G)$ of a planar graph $G$ : minimum number lines supporting all the edges in any planar straight-line drawing of $G$

maximizing number of alignments


## Basic Definitions

segment $=$ maximal set of edges forming a line segment
segment number $\operatorname{seg}(G)$ of a planar graph $G$ :
minimum number of segments


> in any planar straight-line drawing of $G$
> Dujmović, Eppstein, Suderman, Wood (CGTA'07)


| minimizing number of segments |
| :---: |
| $\hat{=}$ |
| maximizing number of alignments |

respective optimization problem: SEGMENT NUMBER
line cover number line $(G)$ of a planar graph $G$ : minimum number lines supporting all the edges in any planar straight-line drawing of $G$ Chaplick et al. (GD'16)
respective minimization problem: Line Cover Number

## Warm-Up: Banana-Trees, and -Cycles


banana:
Scott/Seymour 2020
union of internally disjoint paths
with common endpoints

## Warm-Up: Banana-Trees, and -Cycles

independent vertices

banana: (Scott/Seymour 2020 )
union of internally disjoint paths
of length two with common endpoints

## Warm-Up: Banana-Trees, and -Cycles

independent vertices

banana:
(Scott/Seymour 2020 )
union of internally disjoint paths
of length two with common endpoints

## Observation: Dujmović, Eppstein, Suderman, Wood '07

A banana with $k$ parallel paths of length two has segment number $\lfloor 3 k / 2\rfloor$.

## Warm-Up: Banana-Trees, and -Cycles

independent vertices

banana tree
Scott/Seymour 2020 tree where each edge is replaced by a banana.
banana: (Scott/Seymour 2020 )
union of internally disjoint paths
of length two with common endpoints

## Observation: Dujmović, Eppstein, Suderman, Wood '07

A banana with $k$ parallel paths of length two has segment number $\lfloor 3 k / 2\rfloor$.

## Warm-Up: Banana-Trees, and -Cycles

independent vertices

banana tree
Scott/Seymour 2020
tree where each edge is replaced by a banana.
banana: (Scott/Seymour 2020 )
union of internally disjoint paths
of length two with common endpoints

## Observation: Dujmović, Eppstein, Suderman, Wood '07

A banana with $k$ parallel paths of length two has segment number $\lfloor 3 k / 2\rfloor$.

## Theorem:

The segment number of a banana tree can be determined in linear time.

- align as many edges as possible with other bananas,
- the (larger) remainder with the same banana


## Warm-Up: Banana-Trees, and -Cycles

## independent vertices


tree where each edge is replaced by a banana. (simple cycle)
banana:
(Scott/Seymour 2020 )
union of internally disjoint paths
of length two with common endpoints

## Observation: Dujmović, Eppstein, Suderman, Wood '07

A banana with $k$ parallel paths of length two has segment number $\lfloor 3 k / 2\rfloor$.

## Theorem:

The segment number of a banana tree can be determined in linear time.

## Warm-Up: Banana-Trees, and -Cycles

independent vertices

banana tree (cycle)
tree where each edge is replaced by a banana. (simple cycle)
(Scott/Seymour 2020 )
banana:
union of internally disjoint paths
of length two with common endpoints
Observation: Dujmović, Eppstein, Suderman, Wood '07
A banana with $k$ parallel paths of length two has segment number $\lfloor 3 k / 2\rfloor$.

## Theorem:

The segment number of a banana tree can be determined in linear time.


Theorem:
The segment number of a banana cycle
of length at least five and with at least two independent vertices per banana can be determined in linear time.


- align as many edges as possible with other bananas,
- the (larger) remainder with the same banana


## Related Work

The segment number was defined by Dujmović, Eppstein, Suderman, Wood (CGTA 2007)

## Related Work

The segment number was defined by Dujmović, Eppstein, Suderman, Wood (CGTA 2007) SEGMENT Number is $\exists \mathbb{R}$-complete [ORW-GD'19], NP-hard for fixed embedding [DMNW-JGAA'17]

## Related Work

The segment number was defined by Dujmović, Eppstein, Suderman, Wood (CGTA 2007) Segment Number is $\exists \mathbb{R}$-complete [ORW-GD'19], NP-hard for fixed embedding [DMNW-JGAA'17] Segment Number is in $\mathcal{P}$ for

- trees [DESW-CGTA'07]
- series-parallel graphs with deg $\leq 3$ [SAAR-GD'08]
- subdivisions of outerplanar paths [Adnan'08]
- 3-connected cubic planar graphs [DESW-CGTA'07,IMS-JGAA'17]
- cacti [G5KWZ-WG'22]


## Related Work

The segment number was defined by Dujmović, Eppstein, Suderman, Wood (CGTA 2007) Segment Number is $\exists \mathbb{R}$-complete [ORW-GD'19], NP-hard for fixed embedding [DMNW-JGAA'17] Segment Number is in $\mathcal{P}$ for

- trees [DESW-CGTA'07]
- series-parallel graphs with deg $\leq 3$ [SAAR-GD'08]
- subdivisions of outerplanar paths [Adnan'08]
- 3-connected cubic planar graphs [DESW-CGTA'07,IMS-JGAA'17]
- cacti [G5KWZ-WG'22]

Bounds for various graph classes, e.g.,

- outerplanar graphs, 2-trees, planar 3-trees, 3-connected plane graphs [DESW-CGTA'07]
- (4-connected) triangulations [DM-CGTA'19]
- triconnected planar 4-regular graphs [G5KWZ-WG'22]


## Related Work

The segment number was defined by Dujmović, Eppstein, Suderman, Wood (CGTA 2007) SEGment Number is $\exists \mathbb{R}$-complete [ORW-GD'19], NP-hard for fixed embedding [DMNW-JGAA'17] Segment Number is in $\mathcal{P}$ for

- trees [DESW-CGTA'07]
- series-parallel graphs with deg $\leq 3$ [SAAR-GD'08]
- subdivisions of outerplanar paths [Adnan'08]
- 3-connected cubic planar graphs [DESW-CGTA'07,IMS-JGAA'17]
- cacti [G5KWZ-WG'22]

Bounds for various graph classes, e.g.,

- outerplanar graphs, 2-trees, planar 3-trees, 3-connected plane graphs [DESW-CGTA'07]
- (4-connected) triangulations [DM-CGTA'19]
- triconnected planar 4-regular graphs [G5KWZ-WG'22]
grid drawings [Schulz-JGAA'15, HKMS-JGAA'18, KMSS-GD'19]
user studies [KMS-GD'17]


## Related Work

The segment number was defined by Dujmović, Eppstein, Suderman, Wood (CGTA 2007) SEGMENT Number is $\exists \mathbb{R}$-complete [ORW-GD'19], NP-hard for fixed embedding [DMNW-JGAA'17] Segment Number is in $\mathcal{P}$ for

- trees [DESW-CGTA'07]
- series-parallel graphs with deg $\leq 3$ [SAAR-GD'08]
- subdivisions of outerplanar paths [Adnan'08]
- 3-connected cubic planar graphs [DESW-CGTA'07,IMS-JGAA'17]
- cacti [G5KWZ-WG'22]

Bounds for various graph classes, e.g.,

- outerplanar graphs, 2-trees, planar 3-trees, 3-connected plane graphs [DESW-CGTA'07]
- (4-connected) triangulations [DM-CGTA'19]

Recall: decision problem with input $x$, parameter $k$
is fixed-parameter tractable (FPT)
if solvable with run time
$\mathcal{O}\left(f(k)|x|^{c}\right), c$ constant, $f$ computable

- triconnected planar 4-regular graphs [G5KWZ-WG'22] grid drawings [Schulz-JGAA'15, HKMS-JGAA'18, KMSS-GD'19] user studies [KMS-GD'17]


## Renegar's Decision Algorithm (Renegar, 1992)

Given an existential first-order formula about the reals

$$
\exists x_{1} \ldots x_{m} \Phi\left(x_{1}, \ldots, x_{m}\right)
$$

( $\Phi$ : Boolean combination of equalities and inequalities of polynomials over $\mathbb{Q}$ )
it can be decided in time exponentially in $m$ whether the formula is realizable over the reals.

## Renegar's Decision Algorithm (Renegar, 1992)

Given an existential first-order formula about the reals

$$
\exists x_{1} \ldots x_{m} \Phi\left(x_{1}, \ldots, x_{m}\right)
$$

( $\Phi$ : Boolean combination of equalities and inequalities of polynomials over $\mathbb{Q}$ )
it can be decided in time exponentially in $m$ whether the formula is realizable over the reals.
basis depends on size and degree of polynomials
It can be expressed as an existential first-order formula about the reals whether there is a set of points in the plane

- that is a straight-line planar drawing of a plane graph,
(CFLRVW-JGAA'23)
- given pairs of edges are aligned
- given quadrangles are not convex

$\rightsquigarrow \mathcal{O}\left(|V|^{\mathcal{O}}(|V|)\right.$ algorithm for Segment Number


## Segment Number by Vertex Cover Number

vertex cover of a graph $G=(V, E)$ : set $V^{\prime} \subseteq V$ s.t. $e \cap V^{\prime} \neq \emptyset$ for each $e \in E$ vertex cover number of a graph: size of its smallest vertex cover


## Segment Number by Vertex Cover Number

vertex cover of a graph $G=(V, E)$ : set $V^{\prime} \subseteq V$ s.t. $e \cap V^{\prime} \neq \emptyset$ for each $e \in E$
vertex cover number of a graph:
size of its smallest vertex cover
Segment Number by Vertex Cover Number
Input: planar graph $G=(V, E)$, integer $s$ Parameter: vertex cover number $k$ of $G$ Question: Is segment number of $G$ at most $s$ ?
vertex cover number: 5 vertex cover vertices $V^{\prime}$ independent vertices $V \backslash V^{\prime}$


## Segment Number by Vertex Cover Number

vertex cover of a graph $G=(V, E)$ : set
$V^{\prime} \subseteq V$ s.t. $e \cap V^{\prime} \neq \emptyset$ for each $e \in E$
vertex cover number of a graph:
size of its smallest vertex cover
Segment Number by Vertex Cover Number
Input: planar graph $G=(V, E)$, integer $s$ Parameter: vertex cover number $k$ of $G$
Question: Is segment number of $G$ at most $s$ ?


Overview of the Approach for computing the segment number:

1. Remove some vertices of degree one and two
2. Iterate over all possible embeddings and alignments
3. Use Renegar to test for realizability
4. Reinsert the missing vertices optimally via an ILP
$\rightsquigarrow \mathcal{O}\left(2^{k}\right)$ vertices
$\rightsquigarrow$ number of choices is a function in $k$
$\rightsquigarrow 2^{\mathcal{O}\left(k 2^{k}\right)}$ time per choice
$\rightsquigarrow 2^{\mathcal{O}\left(k 2^{k}\right)}$ time per choice

Take the best

## Segment Number by Vertex Cover Number

1. Remove some vertices of degree one and two

$\rightsquigarrow \mathcal{O}\left(2^{k}\right)$ vertices

## Segment Number by Vertex Cover Number

1. Remove some vertices of degree one and two

Two independent vertices $v, v^{\prime}$ are equivalent iff adjacent to the same vertices in $V^{\prime}$ $j$-class: equivalence class where each vertex is adjacent to exactly $j$ vertices.

$\rightsquigarrow \mathcal{O}\left(2^{k}\right)$ vertices

## Segment Number by Vertex Cover Number

1. Remove some vertices of degree one and two

Two independent vertices $v, v^{\prime}$ are equivalent iff adjacent to the same vertices in $V^{\prime}$ $j$-class: equivalence class where each vertex is adjacent to exactly $j$ vertices.
a) Remove all vertices of degree 1 (1-classes)

$\rightsquigarrow \mathcal{O}\left(2^{k}\right)$ vertices

## Segment Number by Vertex Cover Number

1. Remove some vertices of degree one and two

Two independent vertices $v, v^{\prime}$ are equivalent iff adjacent to the same vertices in $V^{\prime}$ $j$-class: equivalence class where each vertex is adjacent to exactly $j$ vertices.
a) Remove all vertices of degree 1 (1-classes)


## Segment Number by Vertex Cover Number

1. Remove some vertices of degree one and two

Two independent vertices $v, v^{\prime}$ are equivalent iff adjacent to the same vertices in $V^{\prime}$ $j$-class: equivalence class where each vertex is adjacent to exactly $j$ vertices.
a) Remove all vertices of degree 1 (1-classes)
b) For each 2-class, maintain at most $k$ vertices
$\rightsquigarrow$ one per contiguous 2-class

$\rightsquigarrow \mathcal{O}\left(2^{k}\right)$ vertices

## Segment Number by Vertex Cover Number

1. Remove some vertices of degree one and two

Two independent vertices $v, v^{\prime}$ are equivalent iff adjacent to the same vertices in $V^{\prime}$ $j$-class: equivalence class where each vertex is adjacent to exactly $j$ vertices.
a) Remove all vertices of degree 1 (1-classes)
b) For each 2-class, maintain at most $k$ vertices
$\rightsquigarrow$ one per contiguous 2-class


## Segment Number by Vertex Cover Number

1. Remove some vertices of degree one and two

Two independent vertices $v, v^{\prime}$ are equivalent iff adjacent to the same vertices in $V^{\prime}$ $j$-class: equivalence class where each vertex is adjacent to exactly $j$ vertices.
a) Remove all vertices of degree 1 (1-classes)
b) For each 2-class, maintain at most $k$ vertices
$\rightsquigarrow$ one per contiguous 2-class
c) Each $j$-class, $j>2$ contains at most two vertices otherwise there would be a $K_{3,3}$

$\rightsquigarrow \mathcal{O}\left(2^{k}\right)$ vertices

## Segment Number by Vertex Cover Number

## 1. Remove some vertices of degree one and two

vertex cover number: 5

Two independent vertices $v, v^{\prime}$ are equivalent iff adjacent to the same vertices in $V^{\prime}$ $j$-class: equivalence class where each vertex is adjacent to exactly $j$ vertices.
a) Remove all vertices of degree 1 (1-classes)
b) For each 2-class, maintain at most $k$ vertices
$\rightsquigarrow$ one per contiguous 2-class
c) Each $j$-class, $j>2$ contains at most two vertices otherwise there would be a $K_{3,3}$
d) Vertex cover

$2 \cdot \sum_{j=3}^{k}\binom{k}{j} \in \mathcal{O}\left(2^{k}\right)$
$k$
$\rightsquigarrow \mathcal{O}\left(2^{k}\right)$ vertices

## Segment Number by Vertex Cover Number

2. Iterate over all possible embeddings and alignments
a) each contiguous 2 -class is represented by 4 paths which must form a non-convex quadrangle (boomerang) (alignments at independent vertices represented by edges)


## Segment Number by Vertex Cover Number

2. Iterate over all possible embeddings and alignments
a) each contiguous 2 -class is represented by 4 paths which must form a non-convex quadrangle (boomerang) (alignments at independent vertices represented by edges)
b) further subdivide boomerangs, according to the choice of the alignments
still $\mathcal{O}\left(2^{k}\right)$ vertices


## Segment Number by Vertex Cover Number

2. Iterate over all possible embeddings and alignments
a) each contiguous 2-class is represented by 4 paths which must form a non-convex quadrangle (boomerang) (alignments at independent vertices represented by edges)
b) further subdivide boomerangs, according to the choice of the alignments
still $\mathcal{O}\left(2^{k}\right)$ vertices

3. Use Renegar to test in $2^{\mathcal{O}\left(k 2^{k}\right)}$ time for realizability
if the answer is yes then...

## Segment Number by Vertex Cover Number

4. Reinsert the missing vertices optimally via an ILP


## Segment Number by Vertex Cover Number

4. Reinsert the missing vertices optimally via an ILP
$x$ (vertex $v$, boomerang $b$, boomerang $d$ ):
number of edges in $b$ and $d$ that should be aligned at $v$


## Segment Number by Vertex Cover Number

4. Reinsert the missing vertices optimally via an ILP
$x$ (vertex $v$, boomerang $b$, boomerang $d$ ):
number of edges in $b$ and $d$ that should be aligned at $v$
$y($ vertex $v$, boomerang $b)$ :
number of edges in $b$ that should be aligned with leaves adjacent to $v$


## Segment Number by Vertex Cover Number

4. Reinsert the missing vertices optimally via an ILP
$x$ (vertex $v$, boomerang $b$, boomerang $d$ ):
number of edges in $b$ and $d$ that should be aligned at $v$
$y($ vertex $v$, boomerang $b)$ :
number of edges in $b$ that should be aligned with leaves adjacent to $v$
maximize $x+y$

make sure that total number of independent vertices per 1 - and 2-class is not exceeded
$\mathcal{O}\left(2^{k}\right)$ variables and constraints
$\rightsquigarrow$ can be solved in $2^{\mathcal{O}\left(k 2^{k}\right)}$ time

## Segment Number by Vertex Cover Number

4. Reinsert the missing vertices optimally via an ILP
$x$ (vertex $v$, boomerang $b$, boomerang $d$ ):
number of edges in $b$ and $d$ that should be aligned at $v$
$y($ vertex $v$, boomerang $b)$ :
number of edges in $b$ that should be aligned with leaves adjacent to $v$
maximize $x+y$

Observe:
Due to the non-convex shape, any given slopes on either sides can be combined s.t. intersection point lies inside boomerang.


$w$ <br> <br> } <br> \section*{ <br> \section*{ <br> ,}

## Segment Number by Vertex Cover Number

4. Reinsert the missing vertices optimally via an ILP
$x$ (vertex $v$, boomerang $b$, boomerang $d$ ):
number of edges in $b$ and $d$ that should be aligned at $v$
$y($ vertex $v$, boomerang $b)$ :
number of edges in $b$ that should be aligned with leaves adjacent to $v$
maximize $x+y$

Observe:
Due to the non-convex
shape, any given slopes on either sides can be combined s.t. intersection point lies inside boomerang.



make sure that total number of independent vertices per 1 - and 2-class is not exceeded
$\mathcal{O}\left(2^{k}\right)$ variables and constraints
$\rightsquigarrow$ can be solved in $2^{\mathcal{O}\left(k 2^{k}\right)}$ time

## Segment Number by Vertex Cover Number

4. Reinsert the missing vertices optimally via an ILP
$x$ (vertex $v$, boomerang $b$, boomerang $d$ ):
number of edges in $b$ and $d$ that should be aligned at $v$
$y($ vertex $v$, boomerang $b)$ :
number of edges in $b$ that should be aligned with leaves adjacent to $v$
maximize $x+y$

Observe:
Due to the non-convex
shape, any given slopes on either sides can be combined s.t. intersection point lies inside boomerang.


$w$

## Segment Number by Vertex Cover Number

4. Reinsert the missing vertices optimally via an ILP
$x$ (vertex $v$, boomerang $b$, boomerang $d$ ):
number of edges in $b$ and $d$ that should be aligned at $v$
$y($ vertex $v$, boomerang $b)$ :
number of edges in $b$ that should be aligned with leaves adjacent to $v$
maximize $x+y$

Observe:
Due to the non-convex shape, any given slopes on either sides can be combined s.t. intersection point lies inside boomerang.

## at $v$

maximize $x+y$


## Segment Number by Vertex Cover Number

4. Reinsert the missing vertices optimally via an ILP
$x$ (vertex $v$, boomerang $b$, boomerang $d$ ):
number of edges in $b$ and $d$ that should be aligned at $v$
$y($ vertex $v$, boomerang $b)$ :
number of edges in $b$ that should be aligned with leaves adjacent to $v$
maximize $x+y$

Observe:
Due to the non-convex shape, any given slopes on either sides can be combined s.t. intersection point lies inside boomerang.
maximize $x+y$

$\rightsquigarrow$ can be solved in $2^{\mathcal{O}\left(k 2^{k}\right)}$ time

## List-Coloring meets Segment Number

List-Incidence Segment Number
Input: planar graph $G$ and, for each $e \in E(G)$, a list $L(e) \subseteq[k]$.
Parameter: An integer $k$.
Question: Does there exist

- a planar straight-line drawing of $G$ with $\leq k$ segments and
- a labeling $s_{1}, s_{2}, \ldots$ of its segments, s.t.
- for every $e \in E(G), e$ is drawn on a segment in $\left\{s_{i}: i \in L(e)\right\}$ ?



## List-Coloring meets Segment Number

List-Incidence Segment Number
Input: planar graph $G$ and, for each $e \in E(G)$, a list $L(e) \subseteq[k]$.
Parameter: An integer $k$.
Question: Does there exist

- a planar straight-line drawing of $G$ with $\leq k$ segments and
- a labeling $s_{1}, s_{2}, \ldots$ of its segments, s.t.
- for every $e \in E(G), e$ is drawn on a segment in $\left\{s_{i}: i \in L(e)\right\}$ ?


List-Incidence Segment Number is in FPT wrt. Segment Number
Input: planar graph $G=(V, E)$, integer $k$, lists $L(e) \subseteq[k], e \in E$


## List-Incidence Segment Number is in FPT wrt. Segment Number

Input: planar graph $G=(V, E)$, integer $k$, lists $L(e) \subseteq[k], e \in E$ Split $G$ into

- graph $G_{>2}=\left(V_{>2}, E_{>2}\right)$ induced by vertices of degree $>2$
- light paths of degree 2.



## List-Incidence Segment Number is in FPT wrt. Segment Number

Input: planar graph $G=(V, E)$, integer $k$, lists $L(e) \subseteq[k], e \in E$ Split $G$ into

- graph $G_{>2}=\left(V_{>2}, E_{>2}\right)$ induced by vertices of degree $>2$
- light paths of degree 2.



## List-Incidence Segment Number is in FPT wrt. Segment Number

Input: planar graph $G=(V, E)$, integer $k$, lists $L(e) \subseteq[k], e \in E$ Split $G$ into

- graph $G_{>2}=\left(V_{>2}, E_{>2}\right)$ induced by vertices of degree $>2$
- light paths of degree 2.



## List-Incidence Segment Number is in FPT wrt. Segment Number

Input: planar graph $G=(V, E)$, integer $k$, lists $L(e) \subseteq[k], e \in E$ Split $G$ into

- graph $G_{>2}=\left(V_{>2}, E_{>2}\right)$ induced by vertices of degree $>2$
- light paths of degree 2.



## List-Incidence Segment Number is in FPT wrt. Segment Number

Input: planar graph $G=(V, E)$, integer $k$, lists $L(e) \subseteq[k], e \in E$ Split $G$ into

- graph $G_{>2}=\left(V_{>2}, E_{>2}\right)$ induced by vertices of degree $>2$
- light paths of degree 2.



## List-Incidence Segment Number is in FPT wrt. Segment Number

Input: planar graph $G=(V, E)$, integer $k$, lists $L(e) \subseteq[k], e \in E$ Split $G$ into $\quad\left|V_{>2}\right| \leq\binom{ k}{2}$

- graph $G_{>2}=\left(V_{>2}, E_{>2}\right)$ induced by vertices of degree $>2$
- light paths of degree 2. at most $2 k \cdot\binom{k}{2}$ many



## List-Incidence Segment Number is in FPT wrt. Segment Number

Input: planar graph $G=(V, E)$, integer $k$, lists $L(e) \subseteq[k], e \in E$ Split $G$ into $\quad\left|V_{>2}\right| \leq\binom{ k}{2}$

- graph $G_{>2}=\left(V_{>2}, E_{>2}\right)$ induced by vertices of degree $>2$
- light paths of degree 2. at most $2 k \cdot\binom{k}{2}$ many

1. For each arrangement of $k$ lines


## List-Incidence Segment Number is in FPT wrt. Segment Number

Input: planar graph $G=(V, E)$, integer $k$, lists $L(e) \subseteq[k], e \in E$ Split $G$ into $\quad\left|V_{>2}\right| \leq\binom{ k}{2}$

- graph $G_{>2}=\left(V_{>2}, E_{>2}\right)$ induced by vertices of degree $>2$
- light paths of degree 2 . at most $2 k \cdot\binom{k}{2}$ many

1. For each arrangement of $k$ lines
$\mathcal{O}\left(2^{k^{2}}\right)$ arrangements
Construct all plane graphs on $\leq\binom{ k}{2}+2 k$ vertices with $2 k$ leaves, and all coverings with $k$ edge-disjoint paths.


Use Renegar to check wether they are stretchable.


## List-Incidence Segment Number is in FPT wrt. Segment Number

Input: planar graph $G=(V, E)$, integer $k$, lists $L(e) \subseteq[k], e \in E$ Split $G$ into $\quad\left|V_{>2}\right| \leq\binom{ k}{2}$

- graph $G_{>2}=\left(V_{>2}, E_{>2}\right)$ induced by vertices of degree $>2$
- light paths of degree 2 . at most $2 k \cdot\binom{k}{2}$ many

1. For each arrangement of $k$ lines
$\mathcal{O}\left(2^{k^{2}}\right)$ arrangements
Construct all plane graphs on $\leq\binom{ k}{2}+2 k$ vertices with $2 k$ leaves, and all coverings with $k$ edge-disjoint paths.


Use Renegar to check wether they are stretchable.
2. For each placement of $V_{>2}$ on crossings of the lines If this yields a planar drawing of $G_{>2}$ with edges on the lines


## List-Incidence Segment Number is in FPT wrt. Segment Number

Input: planar graph $G=(V, E)$, integer $k$, lists $L(e) \subseteq[k], e \in E$ Split $G$ into $\quad\left|V_{>2}\right| \leq\binom{ k}{2}$

- graph $G_{>2}=\left(V_{>2}, E_{>2}\right)$ induced by vertices of degree $>2$
- light paths of degree 2 . at most $2 k \cdot\binom{k}{2}$ many

1. For each arrangement of $k$ lines
$\mathcal{O}\left(2^{k^{2}}\right)$ arrangements
Construct all plane graphs on $\leq\binom{ k}{2}+2 k$ vertices with $2 k$ leaves, and all coverings with $k$ edge-disjoint paths.


Use Renegar to check wether they are stretchable.
2. For each placement of $V_{>2}$ on crossings of the lines If this yields a planar drawing of $G_{>2}$ with edges on the lines


## List-Incidence Segment Number is in FPT wrt. Segment Number

Input: planar graph $G=(V, E)$, integer $k$, lists $L(e) \subseteq[k], e \in E$ Split $G$ into $\quad\left|V_{>2}\right| \leq\binom{ k}{2}$

- graph $G_{>2}=\left(V_{>2}, E_{>2}\right)$ induced by vertices of degree $>2$
- light paths of degree 2 . at most $2 k \cdot\binom{k}{2}$ many

1. For each arrangement of $k$ lines
$\mathcal{O}\left(2^{k^{2}}\right)$ arrangements
Construct all plane graphs on $\leq\binom{ k}{2}+2 k$ vertices with $2 k$ leaves, and all coverings with $k$ edge-disjoint paths.


Use Renegar to check wether they are stretchable.
2. For each placement of $V_{>2}$ on crossings of the lines $\binom{k}{2}$ ! many If this yields a planar drawing of $G_{>2}$ with edges on the lines


## List-Incidence Segment Number is in FPT wrt. Segment Number

Input: planar graph $G=(V, E)$, integer $k$, lists $L(e) \subseteq[k], e \in E$ Split $G$ into $\quad\left|V_{>2}\right| \leq\binom{ k}{2}$

- graph $G_{>2}=\left(V_{>2}, E_{>2}\right)$ induced by vertices of degree $>2$
- light paths of degree 2 . at most $2 k \cdot\binom{k}{2}$ many

1. For each arrangement of $k$ lines
$\mathcal{O}\left(2^{k^{2}}\right)$ arrangements
Construct all plane graphs on $\leq\binom{ k}{2}+2 k$ vertices with $2 k$ leaves, and all coverings with $k$ edge-disjoint paths.


Use Renegar to check wether they are stretchable.
2. For each placement of $V_{>2}$ on crossings of the lines $\binom{k}{2}$ ! many If this yields a planar drawing of $G_{>2}$ with edges on the lines
3. for each routing of the degree-2-paths that yield a planar drawing of $G$ with $\leq k$ segments

## List-Incidence Segment Number is in FPT wrt. Segment Number

Input: planar graph $G=(V, E)$, integer $k$, lists $L(e) \subseteq[k], e \in E$ Split $G$ into $\quad\left|V_{>2}\right| \leq\binom{ k}{2}$

- graph $G_{>2}=\left(V_{>2}, E_{>2}\right)$ induced by vertices of degree $>2$
- light paths of degree 2. at most $2 k \cdot\binom{k}{2}$ many

1. For each arrangement of $k$ lines
$\mathcal{O}\left(2^{k^{2}}\right)$ arrangements
Construct all plane graphs on $\leq\binom{ k}{2}+2 k$ vertices with $2 k$ leaves, and all coverings with $k$ edge-disjoint paths.


Use Renegar to check wether they are stretchable.
2. For each placement of $V_{>2}$ on crossings of the lines $\binom{k}{2}$ ! many If this yields a planar drawing of $G_{>2}$ with edges on the lines
3. for each routing of the degree-2-paths that yield a

number of choices per path and crossing

## List-Incidence Segment Number is in FPT wrt. Segment Number

Input: planar graph $G=(V, E)$, integer $k$, lists $L(e) \subseteq[k], e \in E$ Split $G$ into $\quad\left|V_{>2}\right| \leq\binom{ k}{2}$

- graph $G_{>2}=\left(V_{>2}, E_{>2}\right)$ induced by vertices of degree $>2$
- light paths of degree 2. at most $2 k \cdot\binom{k}{2}$ many

1. For each arrangement of $k$ lines $\mathcal{O}\left(2^{k^{2}}\right)$ arrangements

Construct all plane graphs on $\leq\binom{ k}{2}+2 k$ vertices with $2 k$ leaves, and all coverings with $k$ edge-disjoint paths.


Use Renegar to check wether they are stretchable.
2. For each placement of $V_{>2}$ on crossings of the lines $\binom{k}{2}$ ! many If this yields a planar drawing of $G_{>2}$ with edges on the lines
3. for each routing of the degree-2-paths that yield a $\left((2 k(k-1))^{k}\right)^{k^{3}}$ many planar drawing of $G$ with $\leq k$ segments 4. for each labeling $s_{1}, \ldots, s_{k}$ of the segments


## List-Incidence Segment Number is in FPT wrt. Segment Number

Input: planar graph $G=(V, E)$, integer $k$, lists $L(e) \subseteq[k], e \in E$ Split $G$ into $\quad\left|V_{>2}\right| \leq\binom{ k}{2}$

- graph $G_{>2}=\left(V_{>2}, E_{>2}\right)$ induced by vertices of degree $>2$
- light paths of degree 2. at most $2 k \cdot\binom{k}{2}$ many

1. For each arrangement of $k$ lines $\mathcal{O}\left(2^{k^{2}}\right)$ arrangements

Construct all plane graphs on $\leq\binom{ k}{2}+2 k$ vertices with $2 k$ leaves, and all coverings with $k$ edge-disjoint paths.


Use Renegar to check wether they are stretchable.
2. For each placement of $V_{>2}$ on crossings of the lines $\binom{k}{2}$ ! many If this yields a planar drawing of $G_{>2}$ with edges on the lines
3. for each routing of the degree-2-paths that yield a $\left((2 k(k-1))^{k}\right)^{k^{3}}$ many planar drawing of $G$ with $\leq k$ segments 4. for each labeling $s_{1}, \ldots, s_{k}$ of the segments


## List-Incidence Segment Number is in FPT wrt. Segment Number

Input: planar graph $G=(V, E)$, integer $k$, lists $L(e) \subseteq[k], e \in E$ Split $G$ into $\quad\left|V_{>2}\right| \leq\binom{ k}{2}$

- graph $G_{>2}=\left(V_{>2}, E_{>2}\right)$ induced by vertices of degree $>2$
- light paths of degree 2. at most $2 k \cdot\binom{k}{2}$ many

1. For each arrangement of $k$ lines $\mathcal{O}\left(2^{k^{2}}\right)$ arrangements

Construct all plane graphs on $\leq\binom{ k}{2}+2 k$ vertices with $2 k$ leaves, and all coverings with $k$ edge-disjoint paths.


Use Renegar to check wether they are stretchable.
2. For each placement of $V_{>2}$ on crossings of the lines $\binom{k}{2}$ ! many If this yields a planar drawing of $G_{>2}$ with edges on the lines
3. for each routing of the degree-2-paths that yield a $\left((2 k(k-1))^{k}\right)^{k^{3}}$ many planar drawing of $G$ with $\leq k$ segments
4. for each labeling $s_{1}, \ldots, s_{k}$ of the segments $k$ ! many


## List-Incidence Segment Number is in FPT wrt. Segment Number

Input: planar graph $G=(V, E)$, integer $k$, lists $L(e) \subseteq[k], e \in E$ Split $G$ into $\quad\left|V_{>2}\right| \leq\binom{ k}{2}$

- graph $G_{>2}=\left(V_{>2}, E_{>2}\right)$ induced by vertices of degree $>2$
- light paths of degree 2. at most $2 k \cdot\binom{k}{2}$ many

1. For each arrangement of $k$ lines $\mathcal{O}\left(2^{k^{2}}\right)$ arrangements

Construct all plane graphs on $\leq\binom{ k}{2}+2 k$ vertices with $2 k$ leaves, and all coverings with $k$ edge-disjoint paths.


Use Renegar to check wether they are stretchable.
2. For each placement of $V_{>2}$ on crossings of the lines $\binom{k}{2}$ ! many If this yields a planar drawing of $G_{>2}$ with edges on the lines
3. for each routing of the degree-2-paths that yield a $\left((2 k(k-1))^{k}\right)^{k^{3}}$ many planar drawing of $G$ with $\leq k$ segments
4. for each labeling $s_{1}, \ldots, s_{k}$ of the segments $k$ ! many


## List-Incidence Segment Number is in FPT wrt. Segment Number

Input: planar graph $G=(V, E)$, integer $k$, lists $L(e) \subseteq[k], e \in E$ Split $G$ into $\quad\left|V_{>2}\right| \leq\binom{ k}{2}$

- graph $G_{>2}=\left(V_{>2}, E_{>2}\right)$ induced by vertices of degree $>2$
- light paths of degree 2. at most $2 k \cdot\binom{k}{2}$ many

1. For each arrangement of $k$ lines $\mathcal{O}\left(2^{k^{2}}\right)$ arrangements

Construct all plane graphs on $\leq\binom{ k}{2}+2 k$ vertices with $2 k$ leaves, and all coverings with $k$ edge-disjoint paths.
 Use Renegar to check wether they are stretchable.
2. For each placement of $V_{>2}$ on crossings of the lines $\binom{k}{2}$ ! many If this yields a planar drawing of $G_{>2}$ with edges on the lines
3. for each routing of the degree-2-paths that yield a
$\left((2 k(k-1))^{k}\right)^{k^{3}}$ many planar drawing of $G$ with $\leq k$ segments
4. for each labeling $s_{1}, \ldots, s_{k}$ of the segments $k$ ! many use dynamic programming to test whether
 each light path $P$ can be realized on route $S$ obeying $L(e)$

## List-Incidence Segment Number is in FPT wrt. Segment Number

Input: planar graph $G=(V, E)$, integer $k$, lists $L(e) \subseteq[k], e \in E$ Split $G$ into $\quad\left|V_{>2}\right| \leq\binom{ k}{2}$

- graph $G_{>2}=\left(V_{>2}, E_{>2}\right)$ induced by vertices of degree $>2$
- light paths of degree 2. at most $2 k \cdot\binom{k}{2}$ many

1. For each arrangement of $k$ lines $\mathcal{O}\left(2^{k^{2}}\right)$ arrangements

Construct all plane graphs on $\leq\binom{ k}{2}+2 k$ vertices with $2 k$ leaves, and all coverings with $k$ edge-disjoint paths.
 Use Renegar to check wether they are stretchable.
2. For each placement of $V_{>2}$ on crossings of the lines $\binom{k}{2}$ ! many If this yields a planar drawing of $G_{>2}$ with edges on the lines
3. for each routing of the degree-2-paths that yield a
$\left((2 k(k-1))^{k}\right)^{k^{3}}$ many planar drawing of $G$ with $\leq k$ segments
4. for each labeling $s_{1}, \ldots, s_{k}$ of the segments $k$ ! many use dynamic programming to test whether
 each light path $P$ can be realized on route $S$ obeying $L(e)$
$\mathcal{O}(|P| \cdot|S| \cdot \log k)$ per path $\rightsquigarrow \mathcal{O}(n \cdot k \cdot \log k)$ for all paths

## Summary and Open Problems

- The segment number can be determined in linear time for banana trees.


## Summary and Open Problems

- The segment number can be determined in linear time for banana trees.
- Segment Number is in FPT parameterized by
- the vertex cover number
- the segment number
- the line cover number


## Summary and Open Problems

- The segment number can be determined in linear time for banana trees.
- Segment Number is in FPT parameterized by
- the vertex cover number
- the segment number
- the line cover number
- The list-coloring versions of Segment Number and Line Cover Number are in FPT parameterized by their natural parameters


## Summary and Open Problems

- The segment number can be determined in linear time for banana trees.
- Segment Number is in FPT parameterized by
- the vertex cover number
- the segment number
- the line cover number
- The list-coloring versions of Segment Number and Line Cover Number are in FPT parameterized by their natural parameters
- It would be interesting to investigate Segment Number w.r.t. other parameters
- treewidth (complexity even for tree-width 2 unknown)
- cluster deletion number
minimum number of vertices that have to be removed s.t.
remainder is union of disjoint cliques.


## Summary and Open Problems

- The segment number can be determined in linear time for banana trees.
- Segment Number is in FPT parameterized by
- the vertex cover number
- the segment number
- the line cover number
- The list-coloring versions of Segment Number and Line Cover Number are in FPT parameterized by their natural parameters
- It would be interesting to investigate SEGMENT Number w.r.t. other parameters
- treewidth (complexity even for tree-width 2 unknown)
- cluster deletion number minimum number of vertices that have to be removed s.t. remainder is union of disjoint cliques.

