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Simultaneous embeddability

Definition
A collection G of planar graphs on n vertices is simultaneously
embeddable if there exists a set P C R? of size n such that every

G € G admits a crossing-free straight-line embedding on P.
Otherwise, G is a conflict collection.
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Major open problem in the area

Problem (Brass, Cenek, Duncan, Efrat, Erten, Ismailescu,

Kobourov, Lubiw and Mitchell 2007)

Is there a conflict collection G = {G1, Ga} of size two?
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Progress so far

o(n) :=minimum size of a conflict collection of n-vertex graphs
o :=minimum size of any conflict collection
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e Cardinal, Hoffmann and Kusters (2015): For n < 10, there is
no conflict collection. For n > 15, we have o(n) < cc.
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e Cardinal, Hoffmann and Kusters (2015): For n < 10, there is
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e Cardinal, Hoffmann and Kusters (2015):
7(35) < 7393 = o < 7393.

@ Scheucher, Schrezenmaier and S. (2019):
0(11) <49 = o < 49.
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Progress so far

o(n) :=minimum size of a conflict collection of n-vertex graphs
o :=minimum size of any conflict collection

Problem (Brass, Cenek, Duncan, Efrat, Erten, Ismailescu,

Kobourov, Lubiw and Mitchell 2007)
Isoc =27

e Cardinal, Hoffmann and Kusters (2015): For n < 10, there is
no conflict collection. For n > 15, we have o(n) < cc.

e Cardinal, Hoffmann and Kusters (2015):
7(35) < 7393 = o < 7393.

@ Scheucher, Schrezenmaier and S. (2019):
0(11) <49 = o < 49.

e Goenka, Semnani and Yip (2023): o(n) = O(1.135") via an
explicit construction of a conflict collection.
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New results

Theorem (S. 2023)
It holds that o(n) < (3 + o(1)) log,(n).
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New results

Theorem (S. 2023

)
It holds that o(n) < (3 + o(1)) log,(n).

Theorem (S. 2023)

For every n € {107,...,193}, we have o(n) < 30 = o < 30.
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New results

Theorem (S. 2023)

It holds that o(n) < (3 + o(1)) log,(n).

Theorem (S. 2023)

For every n € {107,...,193}, we have o(n) < 30 = o < 30.

Theorem (S. 2023)

For n > 5040 there exists an explicitly constructed conflict
collection consisting of

P +1=n(n—1)(n-2)(n—3)(n—4)(n-5)+1<n°

planar n-vertex graphs.
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Randomly generating stacked triangulations

Random process to generate n-vertex labelled stacked
triangulation:
e Start from a Ky on vertices {1,2,3,4}.
@ Fori=4,...,n—1, randomly and uniformly select one of the
2i — 4 faces of the current stacked triangulation and stack a
vertex with label i + 1 into the selected face.
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Randomly generating stacked triangulations

Random process to generate n-vertex labelled stacked
triangulation:
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Randomly generating stacked triangulations

Random process to generate n-vertex labelled stacked
triangulation:

Start from a Ky on vertices {1, 2, 3,4}.

@ Fori=4,...,n—1, randomly and uniformly select one of the
2i — 4 faces of the current stacked triangulation and stack a
vertex with label i + 1 into the selected face.

Important to note:

@ Number of possible outcomes of the process:

4.6---(2(n—1) —4)=2""*n-3)

Each of them is equally likely

Given a labelling of a point set P, at most one stacked
triangulation embeds in a label-preserving way
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Main lemma

Lemma

Let G denote the random n-vertex triangulation generated
according to the described process. Then for every P C R? of size
n, we have:

16n(n—1)(n=2) _ ,—a-o())n
2”

P(G embeds straight-line on P) <
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Main lemma

Let G denote the random n-vertex triangulation generated
according to the described process. Then for every P C R? of size
n, we have:

16n(n—1)(n—2) _ o—(1—o(1))n
2”

Every straight-line embedding of G induces a {1, ..., n}-labelling
of P. There are n! such labellings. For a fixed labelling of P, at
most one triangulation embeds in label-preserving way. Thus, at
most n! of the relevant stacked triangulations embed on P. Hence,

P(G embeds straight-line on P) <

n! _16n(n—1)(n—2)
2n—4(p—3)! 2n '

[
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P(G embeds on P) <



Straight-line embeddability and order types

Two point sets P = {p1,...,pn}, @ ={4q1,...,qn}have same
order-type if Vi, j, k: pipjpx and giqjqx have the same orientation.
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Straight-line embeddability and order types

Definition

Two point sets P = {p1,...,pn}, @ ={4q1,...,qn}have same
order-type if Vi, j, k: pipjpx and giqjqx have the same orientation.
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D3pape = +

Raphael Steiner A logarithmic bound for simultaneous embeddings



Straight-line embeddability and order types

Definition

Two point sets P = {p1,...,pn}, @ ={4q1,...,qn}have same
order-type if Vi, j, k: pipjpx and giqjqx have the same orientation.

430196 = +
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Straight-line embeddability and order types

If P and Q have the same order type, then a planar graph G
embeds on P iff it embeds on Q.
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If P and Q have the same order type, then a planar graph G
embeds on P iff it embeds on Q.

Theorem (Alon 1986)

There are 4t Japelled order types of n points in the plane.
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Straight-line embeddability and order types

If P and Q have the same order type, then a planar graph G
embeds on P iff it embeds on Q.

Theorem (Alon 1986)

There are 4t Japelled order types of n points in the plane.

Corollary

There exists a collection P, consisting of n-point sets with
|Pn| = n4FoNn sych that the following holds. If planar graphs
Gi, ..., Gk are simultaneously embeddable, then there is P € P,

such that every G; embeds on P.
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Proof of o(n) < (4 + o(1)) log,(n).

For all € > 0 there is ng = no(g) € N such that
a(n) < (4 + ¢)logy(n) for all n > ny.
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Proof of o(n) < (4 + o(1)) log,(n).

For all € > 0 there is ng = no(e) € N such that
a(n) < (4 + ¢)logy(n) for all n > ny.

Proof Sketch.

Let k = [(4 4 ¢)logy(n)|. Consider k independently generated
random triangulations {Gy, ..., Gx}. Then for every P € Py:

k
P (/\{G,- embeds on P}) < (27 (=e@)mk — p=(1=o(1))kn,
i=1
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Proof of o(n) < (4 + o(1)) log,(n).

For all € > 0 there is ng = no(e) € N such that
a(n) < (4 + ¢)logy(n) for all n > ny.

Proof Sketch.
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_ p(dto(D)n . p—(4+e—o(1))nlogy(n) _ o—(=—o(1))nlogy(n) _,
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Th nk you f r your a tentio !
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