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Simultaneous embeddability

Definition

A collection G of planar graphs on n vertices is simultaneously
embeddable if there exists a set P ⊆ R2 of size n such that every
G ∈ G admits a crossing-free straight-line embedding on P.
Otherwise, G is a conflict collection.
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Major open problem in the area

Problem (Brass, Cenek, Duncan, Efrat, Erten, Ismailescu,
Kobourov, Lubiw and Mitchell 2007)

Is there a conflict collection G = {G1,G2} of size two?
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Progress so far

σ(n) :=minimum size of a conflict collection of n-vertex graphs
σ :=minimum size of any conflict collection

Problem (Brass, Cenek, Duncan, Efrat, Erten, Ismailescu,
Kobourov, Lubiw and Mitchell 2007)

Is σ = 2?

Cardinal, Hoffmann and Kusters (2015): For n ≤ 10, there is
no conflict collection. For n ≥ 15, we have σ(n) < ∞.

Cardinal, Hoffmann and Kusters (2015):
σ(35) ≤ 7393 ⇒ σ ≤ 7393.

Scheucher, Schrezenmaier and S. (2019):
σ(11) ≤ 49 ⇒ σ ≤ 49.

Goenka, Semnani and Yip (2023): σ(n) = O(1.135n) via an
explicit construction of a conflict collection.
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New results

Theorem (S. 2023)

It holds that σ(n) ≤ (3 + o(1)) log2(n).

Theorem (S. 2023)

For every n ∈ {107, . . . , 193}, we have σ(n) ≤ 30 ⇒ σ ≤ 30.

Theorem (S. 2023)

For n ≥ 5040 there exists an explicitly constructed conflict
collection consisting of

n6 + 1 = n(n − 1)(n − 2)(n − 3)(n − 4)(n − 5) + 1 < n6

planar n-vertex graphs.
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Randomly generating stacked triangulations

Random process to generate n-vertex labelled stacked
triangulation:

Start from a K4 on vertices {1, 2, 3, 4}.
For i = 4, . . . , n− 1, randomly and uniformly select one of the
2i − 4 faces of the current stacked triangulation and stack a
vertex with label i + 1 into the selected face.
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Randomly generating stacked triangulations

Random process to generate n-vertex labelled stacked
triangulation:

Start from a K4 on vertices {1, 2, 3, 4}.
For i = 4, . . . , n− 1, randomly and uniformly select one of the
2i − 4 faces of the current stacked triangulation and stack a
vertex with label i + 1 into the selected face.

Important to note:

Number of possible outcomes of the process:

4 · 6 · · · (2(n − 1)− 4) = 2n−4(n − 3)!

Each of them is equally likely

Given a labelling of a point set P, at most one stacked
triangulation embeds in a label-preserving way
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Main lemma

Lemma

Let G denote the random n-vertex triangulation generated
according to the described process. Then for every P ⊆ R2 of size
n, we have:

P(G embeds straight-line on P) ≤ 16n(n − 1)(n − 2)

2n
= 2−(1−o(1))n

Proof.

Every straight-line embedding of G induces a {1, . . . , n}-labelling
of P. There are n! such labellings. For a fixed labelling of P, at
most one triangulation embeds in label-preserving way. Thus, at
most n! of the relevant stacked triangulations embed on P. Hence,

P(G embeds on P) ≤ n!

2n−4(n − 3)!
=

16n(n − 1)(n − 2)

2n
.
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Straight-line embeddability and order types

Definition

Two point sets P = {p1, . . . , pn},Q = {q1, . . . , qn}have same
order-type if ∀i , j , k: pipjpk and qiqjqk have the same orientation.
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Straight-line embeddability and order types

Observation

If P and Q have the same order type, then a planar graph G
embeds on P iff it embeds on Q.

Theorem (Alon 1986)

There are n(4+o(1))n labelled order types of n points in the plane.

Corollary

There exists a collection Pn consisting of n-point sets with
|Pn| = n(4+o(1))n such that the following holds. If planar graphs
G1, . . . ,Gk are simultaneously embeddable, then there is P ∈ Pn

such that every Gi embeds on P.
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Proof of σ(n) ≤ (4 + o(1)) log2(n).

Theorem

For all ε > 0 there is n0 = n0(ε) ∈ N such that
σ(n) ≤ (4 + ε) log2(n) for all n ≥ n0.

Proof Sketch.

Let k = ⌊(4 + ε) log2(n)⌋. Consider k independently generated
random triangulations {G1, . . . ,Gk}. Then for every P ∈ Pn:

P

(
k∧

i=1

{Gi embeds on P}

)
≤ (2−(1−o(1))n)k = 2−(1−o(1))kn.

P({G1, . . . ,Gk} is simult. embedd.) ≤ |Pn| · 2−(1−o(1))kn

= n(4+o(1))n · 2−(4+ε−o(1))n log2(n) = 2−(ε−o(1))n log2(n) → 0.
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The end

Thank you for your attention!
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