A logarithmic bound for simultaneous embeddings

Raphael Steiner

ETH zürich

Institute of Theoretical Computer Science Department of Computer Science ETH Zürich

Isola delle Femmine, 31st International Symposium on Graph Drawing and Network Visualization September 21, 2023

Problem (Brass, Cenek, Duncan, Efrat, Erten, Ismailescu, Kobourov, Lubiw and Mitchell 2007)

Is there a conflict collection $\mathcal{G} = \{G_1, G_2\}$ of size two?

Problem (Brass, Cenek, Duncan, Efrat, Erten, Ismailescu, Kobourov, Lubiw and Mitchell 2007)

Is $\sigma = 2?$

Problem (Brass, Cenek, Duncan, Efrat, Erten, Ismailescu, Kobourov, Lubiw and Mitchell 2007)

Is $\sigma = 2?$

• Cardinal, Hoffmann and Kusters (2015): For $n \le 10$, there is no conflict collection. For $n \ge 15$, we have $\sigma(n) < \infty$.

Problem (Brass, Cenek, Duncan, Efrat, Erten, Ismailescu, Kobourov, Lubiw and Mitchell 2007) Is $\sigma = 2$?

- Cardinal, Hoffmann and Kusters (2015): For $n \le 10$, there is no conflict collection. For $n \ge 15$, we have $\sigma(n) < \infty$.
- Cardinal, Hoffmann and Kusters (2015): $\sigma(35) \le 7393 \Rightarrow \sigma \le 7393$.

Problem (Brass, Cenek, Duncan, Efrat, Erten, Ismailescu, Kobourov, Lubiw and Mitchell 2007) Is $\sigma = 2$?

- Cardinal, Hoffmann and Kusters (2015): For $n \le 10$, there is no conflict collection. For $n \ge 15$, we have $\sigma(n) < \infty$.
- Cardinal, Hoffmann and Kusters (2015): $\sigma(35) \leq 7393 \Rightarrow \sigma \leq 7393$.
- Scheucher, Schrezenmaier and S. (2019): $\sigma(11) \le 49 \Rightarrow \sigma \le 49$.

Problem (Brass, Cenek, Duncan, Efrat, Erten, Ismailescu, Kobourov, Lubiw and Mitchell 2007) Is $\sigma = 2$?

- Cardinal, Hoffmann and Kusters (2015): For $n \le 10$, there is no conflict collection. For $n \ge 15$, we have $\sigma(n) < \infty$.
- Cardinal, Hoffmann and Kusters (2015): $\sigma(35) \leq 7393 \Rightarrow \sigma \leq 7393$.
- Scheucher, Schrezenmaier and S. (2019): $\sigma(11) \le 49 \Rightarrow \sigma \le 49$.
- Goenka, Semnani and Yip (2023): $\sigma(n) = O(1.135^n)$ via an explicit construction of a conflict collection.

Theorem (S. 2023)

It holds that $\sigma(n) \leq (3 + o(1)) \log_2(n)$.

Theorem (S. 2023)

It holds that $\sigma(n) \leq (3 + o(1)) \log_2(n)$.

Theorem (S. 2023)

For every $n \in \{107, \ldots, 193\}$, we have $\sigma(n) \le 30 \Rightarrow \sigma \le 30$.

Theorem (S. 2023)

It holds that $\sigma(n) \leq (3 + o(1)) \log_2(n)$.

Theorem (S. 2023)

For every $n \in \{107, \ldots, 193\}$, we have $\sigma(n) \le 30 \Rightarrow \sigma \le 30$.

Theorem (S. 2023)

For $n \ge 5040$ there exists an explicitly constructed conflict collection consisting of

$$n^{\underline{6}} + 1 = n(n-1)(n-2)(n-3)(n-4)(n-5) + 1 < n^{\underline{6}}$$

planar n-vertex graphs.

- Start from a K_4 on vertices $\{1, 2, 3, 4\}$.
- For i = 4,..., n 1, randomly and uniformly select one of the 2i 4 faces of the current stacked triangulation and stack a vertex with label i + 1 into the selected face.

- Start from a K_4 on vertices $\{1, 2, 3, 4\}$.
- For i = 4,..., n 1, randomly and uniformly select one of the 2i 4 faces of the current stacked triangulation and stack a vertex with label i + 1 into the selected face.

- Start from a K_4 on vertices $\{1, 2, 3, 4\}$.
- For i = 4,..., n 1, randomly and uniformly select one of the 2i 4 faces of the current stacked triangulation and stack a vertex with label i + 1 into the selected face.

- Start from a K_4 on vertices $\{1, 2, 3, 4\}$.
- For i = 4,..., n 1, randomly and uniformly select one of the 2i 4 faces of the current stacked triangulation and stack a vertex with label i + 1 into the selected face.

- Start from a K_4 on vertices $\{1, 2, 3, 4\}$.
- For i = 4,..., n 1, randomly and uniformly select one of the 2i 4 faces of the current stacked triangulation and stack a vertex with label i + 1 into the selected face.

- Start from a K_4 on vertices $\{1, 2, 3, 4\}$.
- For i = 4,..., n 1, randomly and uniformly select one of the 2i 4 faces of the current stacked triangulation and stack a vertex with label i + 1 into the selected face.

- Start from a K_4 on vertices $\{1, 2, 3, 4\}$.
- For i = 4,..., n 1, randomly and uniformly select one of the 2i 4 faces of the current stacked triangulation and stack a vertex with label i + 1 into the selected face.

Random process to generate *n*-vertex labelled stacked triangulation:

- Start from a K_4 on vertices $\{1, 2, 3, 4\}$.
- For i = 4,..., n 1, randomly and uniformly select one of the 2i 4 faces of the current stacked triangulation and stack a vertex with label i + 1 into the selected face.

Important to note:

Random process to generate *n*-vertex labelled stacked triangulation:

- Start from a K_4 on vertices $\{1, 2, 3, 4\}$.
- For i = 4,..., n 1, randomly and uniformly select one of the 2i 4 faces of the current stacked triangulation and stack a vertex with label i + 1 into the selected face.

Important to note:

• Number of possible outcomes of the process:

$$4 \cdot 6 \cdots (2(n-1)-4) = 2^{n-4}(n-3)!$$

- Each of them is equally likely
- Given a labelling of a point set *P*, at most one stacked triangulation embeds in a label-preserving way

Main lemma

Lemma

Let **G** denote the random n-vertex triangulation generated according to the described process. Then for every $P \subseteq \mathbb{R}^2$ of size n, we have:

$$\mathbb{P}(\mathbf{G} \text{ embeds straight-line on } P) \leq \frac{16n(n-1)(n-2)}{2^n} = 2^{-(1-o(1))n}$$

Main lemma

Lemma

Let **G** denote the random n-vertex triangulation generated according to the described process. Then for every $P \subseteq \mathbb{R}^2$ of size *n*, we have:

$$\mathbb{P}(\mathbf{G} \text{ embeds straight-line on } P) \leq \frac{16n(n-1)(n-2)}{2^n} = 2^{-(1-o(1))n}$$

Proof.

Every straight-line embedding of **G** induces a $\{1, \ldots, n\}$ -labelling of *P*. There are *n*! such labellings. For a fixed labelling of *P*, at most one triangulation embeds in label-preserving way. Thus, at most *n*! of the relevant stacked triangulations embed on *P*. Hence,

$$\mathbb{P}(\mathbf{G} \text{ embeds on } P) \leq rac{n!}{2^{n-4}(n-3)!} = rac{16n(n-1)(n-2)}{2^n}$$

Straight-line embeddability and order types

Definition

Two point sets $P = \{p_1, \ldots, p_n\}, Q = \{q_1, \ldots, q_n\}$ have same order-type if $\forall i, j, k$: $p_i p_j p_k$ and $q_i q_j q_k$ have the same orientation.

Straight-line embeddability and order types

Definition

Two point sets $P = \{p_1, \ldots, p_n\}, Q = \{q_1, \ldots, q_n\}$ have same order-type if $\forall i, j, k$: $p_i p_j p_k$ and $q_i q_j q_k$ have the same orientation.

Straight-line embeddability and order types

Definition

Two point sets $P = \{p_1, \ldots, p_n\}, Q = \{q_1, \ldots, q_n\}$ have same order-type if $\forall i, j, k$: $p_i p_j p_k$ and $q_i q_j q_k$ have the same orientation.

Observation

If P and Q have the same order type, then a planar graph G embeds on P iff it embeds on Q.

Observation

If P and Q have the same order type, then a planar graph G embeds on P iff it embeds on Q.

Theorem (Alon 1986)

There are $n^{(4+o(1))n}$ labelled order types of n points in the plane.

Observation

If P and Q have the same order type, then a planar graph G embeds on P iff it embeds on Q.

Theorem (Alon 1986)

There are $n^{(4+o(1))n}$ labelled order types of n points in the plane.

Corollary

There exists a collection \mathcal{P}_n consisting of n-point sets with $|\mathcal{P}_n| = n^{(4+o(1))n}$ such that the following holds. If planar graphs G_1, \ldots, G_k are simultaneously embeddable, then there is $P \in \mathcal{P}_n$ such that every G_i embeds on P.

Theorem

For all $\varepsilon > 0$ there is $n_0 = n_0(\varepsilon) \in \mathbb{N}$ such that $\sigma(n) \leq (4 + \varepsilon) \log_2(n)$ for all $n \geq n_0$.

Theorem

For all $\varepsilon > 0$ there is $n_0 = n_0(\varepsilon) \in \mathbb{N}$ such that $\sigma(n) \le (4 + \varepsilon) \log_2(n)$ for all $n \ge n_0$.

Proof Sketch.

Let $k = \lfloor (4 + \varepsilon) \log_2(n) \rfloor$. Consider k independently generated random triangulations $\{\mathbf{G}_1, \ldots, \mathbf{G}_k\}$. Then for every $P \in \mathcal{P}_n$:

$$\mathbb{P}\left(\bigwedge_{i=1}^{k} \{\mathbf{G}_{i} \text{ embeds on } P\}\right) \leq (2^{-(1-o(1))n})^{k} = 2^{-(1-o(1))kn}.$$

Theorem

For all $\varepsilon > 0$ there is $n_0 = n_0(\varepsilon) \in \mathbb{N}$ such that $\sigma(n) \le (4 + \varepsilon) \log_2(n)$ for all $n \ge n_0$.

Proof Sketch.

Let $k = \lfloor (4 + \varepsilon) \log_2(n) \rfloor$. Consider k independently generated random triangulations $\{\mathbf{G}_1, \ldots, \mathbf{G}_k\}$. Then for every $P \in \mathcal{P}_n$:

$$\mathbb{P}\left(\bigwedge_{i=1}^k \{\mathbf{G}_i \text{ embeds on } P\}\right) \leq (2^{-(1-o(1))n})^k = 2^{-(1-o(1))kn}.$$

 $\mathbb{P}({\mathbf{G}_1, \dots, \mathbf{G}_k})$ is simult. embedd.) $\leq |\mathcal{P}_n| \cdot 2^{-(1-o(1))kn}$

Theorem

For all $\varepsilon > 0$ there is $n_0 = n_0(\varepsilon) \in \mathbb{N}$ such that $\sigma(n) \le (4 + \varepsilon) \log_2(n)$ for all $n \ge n_0$.

Proof Sketch.

Let $k = \lfloor (4 + \varepsilon) \log_2(n) \rfloor$. Consider k independently generated random triangulations $\{\mathbf{G}_1, \ldots, \mathbf{G}_k\}$. Then for every $P \in \mathcal{P}_n$:

$$\mathbb{P}\left(\bigwedge_{i=1}^k \{\mathbf{G}_i \text{ embeds on } P\}\right) \leq (2^{-(1-o(1))n})^k = 2^{-(1-o(1))kn}.$$

 $\mathbb{P}({\mathbf{G}_1, \dots, \mathbf{G}_k})$ is simult. embedd.) $\leq |\mathcal{P}_n| \cdot 2^{-(1-o(1))kn}$

$$= n^{(4+o(1))n} \cdot 2^{-(4+\varepsilon-o(1))n\log_2(n)} = 2^{-(\varepsilon-o(1))n\log_2(n)} \to 0.$$

Thank you for your attention!

Raphael Steiner A logarithmic bound for simultaneous embeddings