On the Biplanarity of Blowups

David Eppstein

Graph Drawing 2023

Ringel's Earth-Moon problem (1959)

Countries build moon colonies, with different borders than Earth

We must color the maps of the Earth and Moon, so

- Each country gets a single color for both maps
- Adjacent countries on either map get different colors
- We use few colors

How many colors do we need?

Earth-Moon maps as graph drawings

Two equivalent versions:

- Draw graph as two planar subgraphs, covering all edges, in two separate planes (the dual graphs of the countries)
- Draw graph in one plane, with two colors of edges, so that no two edges of the same color cross (may need curved edges)

\# separate planes = \# edge colors for no monochrome crossing = thickness
Graph is biplanar if its thickness is 2 , or equivalently if it is dual to an Earth-Moon map

Sulanke's 9-chromatic Earth-Moon map (1974)

Connect all vertices of a 5 -cycle to all vertices of a 6 -clique

Requires 9 colors - 3 for cycle, 6 for clique
Best upper bound for arbitrary biplanar graphs is 12 colors
Kicked off a line of research: which simple combinations of smaller graphs are biplanar?

Blowups

k-blowup: replace every vertex by a k-vertex independent set
Replace every edge by a complete bipartite subgraph connecting two independent sets

Conjecture [Gethner 2018]: 2-blowups of planar graphs are biplanar

Weak evidence for the conjecture

Count the edges!
A planar graph with n vertices has $\leq 3 n-6$ edges Its blowup has $2 n$ vertices and $\leq 12 n-24$ edges

But a biplanar graph with $2 n$ vertices can have up to $12 n-12$ edges, twelve more edges

When counting is strong enough

Hereditary family with $\leq 2 n-2$ edges \Rightarrow cover edges by two trees [Nash-Williams 1964] 2-blowup of a tree is planar \Rightarrow 2-blowup of whole graph is biplanar [Albertson et al. 2010]

Works for triangle-free planar ($\leq 2 n-4$ edges) but not maximal planar ($3 n-6$ edges) Proves 2-blowup thickness ≤ 3 for all planar graphs

Some maximal planar graphs with biplanar blowups

Partition dual graph into two induced paths \Rightarrow outerpaths in primal

Some maximal planar graphs with biplanar blowups

For each outerpath, draw all four copies of each diagonal edge and two of the four copies of each boundary edge as a planar graph

The story so far

Gethner: Are 2-blowups of planar graphs biplanar?

- Yes for triangle-free planar graphs [known]
- Yes for graphs that can be decomposed into two outerpaths [new]
- In general, they have thickness ≤ 3 [known]

Our main result

No!

Our counterexamples

Kleetope of a polyhedron: glue a pyramid onto each face

Iterated Kleetope: do the same thing repeatedly, some number of times

Why the outerpath decomposition doesn't work

When we glue in a pyramid, each dual path can only visit two of the three new faces
k-level Kleetope $\Rightarrow \#$ faces expands as 3^{k}
Longest path length expands only as 2^{k}
Dual paths too short for two to cover all faces

Why iterated Kleetopes can be hard to draw

The original graph is a subgraph of its Kleetope \Rightarrow Drawings of Kleetope contain drawings of original

If drawing a graph is difficult, drawings its Kleetope can be more difficult

Iterating can make difficulties pile up enough to make drawing become impossible

Counting again

Blowups of maximal planar have only twelve fewer edges than max biplanar \Rightarrow In any drawing, most faces are triangles
$\Rightarrow \exists$ vertex whose four images ($\times 2$ from blowup, $\times 2$ from biplanar) are surrounded entirely by triangular faces

Piling on constraints

There exists a vertex whose four images ...

- ... are each surrounded by triangular faces (max planar)
- ... are each surrounded by three triangles (Kleetope)
- ... are each surrounded by three triangles, sharing ≤ 1 edge with triangles around other images (Kleetope ${ }^{2}$)
- ... are each surrounded by three triangles, edge-disjoint with triangles around other images (Kleetope ${ }^{3}$)
\Rightarrow impossible to draw

Generalization: split thickness

Allow each country to have a colony on the Earth, not on the moon
\Rightarrow drawing with two copies of each node, in a single plane (here: $K_{6,10}$) [Heawood 1890; Eppstein et al. 2018]
\exists drawings of 2-blowups of more graphs E.g.: Kleetopes of outerpath decompositions

Same proof shows that 2-blowups of iterated Kleetopes of large maximal planar graphs do not have split thickness two

Summary

Some planar graphs (iterated Kleetopes of large polyhedra) have non-biplanar 2-blowups

Same proof shows that 2-blowup does not have split thickness two

However, graphs with two-outerpath decompositions have biplanar blowups

Their Kleetopes have split thickness two blowups

Some open problems

Are 2-blowups of 3-colorable planar graphs biplanar?
(Kleetopes are not 3-colorable)
Are 2-blowups of 4-vertex-connected planar graphs biplanar?
(Kleetopes are not 4-vertex-connected)
Biplanarity is NP-complete [Mansfield 1983]; is it hard on 2-blowups of planar graphs?
How hard is it to find our two-outerpath decompositions?
Can our two-outerpath drawing be strengthened to geometric thickness?
(Straight-line plane drawing with two edge colors, no monochromatic crossings)

References and image credits, I

Michael O. Albertson, Debra L. Boutin, and Ellen Gethner. The thickness and chromatic number of r-inflated graphs. Discrete Mathematics, 310(20):2725-2734, 2010. doi: 10.1016/j.disc.2010.04.019.

Alan Bennett. Klein bottle. CC-BY-NC-SA licensed image, Science Museum Group, 1995. URL https://collection.sciencemuseumgroup.org.uk/objects/ co415792/klein-bottle-1995-single-surface-model.
David Eppstein, Philipp Kindermann, Stephen Kobourov, Giuseppe Liotta, Anna Lubiw, Aude Maignan, Debajyoti Mondal, Hamideh Vosoughpour, Sue Whitesides, and Stephen Wismath. On the planar split thickness of graphs. Algorithmica, 80(3): 977-994, 2018. doi: 10.1007/s00453-017-0328-y.
Ellen Gethner. To the Moon and beyond. In Ralucca Gera, Teresa W. Haynes, and Stephen T. Hedetniemi, editors, Graph Theory: Favorite Conjectures and Open Problems, II, Problem Books in Mathematics, pages 115-133. Springer International Publishing, 2018. doi: 10.1007/978-3-319-97686-0_11.

References and image credits, II

P. J. Heawood. Map colour theorem. Quarterly Journal of Mathematics, 24:332-338, 1890.

Anthony Mansfield. Determining the thickness of graphs is NP-hard. Mathematical Proceedings of the Cambridge Philosophical Society, 93(1):9-23, 1983. doi: 10.1017/S030500410006028X.

NASA. The Earth straddling the limb of the Moon, as seen from above Compton crater. Public domain image, October 12 2015. URL https://commons.wikimedia.org/wiki/File: EarthFromTheMoon-LRO-20151012a.jpg.
C. St. J. A. Nash-Williams. Decomposition of finite graphs into forests. J. London Math. Soc., 39:12, 1964. doi: 10.1112/jlms/s1-39.1.12.

Pat Rawlings. Lunar mining facility. Public domain image, 1995. URL https://commons.wikimedia.org/wiki/File:Mooncolony.jpg.

References and image credits, III

Gerhard Ringel. Färbungsprobleme auf Flächen und Graphen, volume 2 of Mathematische Monographien. VEB Deutscher Verlag der Wissenschaften, Berlin, 1959.

Sesame Street. Number of the Day Waltz: 12. YouTube video, 2005. URL https://www.youtube.com/watch?v=GAUSzWo0FyM.
Unknown. Ridiculous parking sign in Culver City, California. Unattributed web image, undated. URL https://www.reddit.com/r/LosAngeles/comments/p6eao0/ does_anyone_know_where_this_ridiculous_parking/.

